Impact of new on-farm technologies in dairy cattle breeding

Filippo Miglior
Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada
Canadian Dairy Network, Guelph, ON, Canada

George R. Wiggans
Animal Improvement Programs Laboratory,
Agricultural Research Service, USDA, Beltsville, MD, USA

Marjorie A. Faust
ABS Global, Inc., Deforest, WI, USA

Brian J. Van Doormaal
Canadian Dairy Network, Guelph, ON, Canada

Questions

- What should we be thinking about to prepare for the future?
- How can we best exploit technology that is/will be available?
- How can we minimize the impact of negative trends?
Dairy Industry Trends

- Consolidation - fewer and larger herds
- Decreasing profit margins
- Increasing...
  - production per cow
  - productivity per labor unit
  - use of technology/automation (robots and computers)
  - demand for data (farms and industry)
  - demand for specialized services (nutrition, health)
  - demand for specialized "production" (e.g., Organic)

General trends

Canadian Dairy Farming

<table>
<thead>
<tr>
<th></th>
<th>1983</th>
<th>2007</th>
<th>% Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>NUMBER OF FARMS</td>
<td>49,936</td>
<td>14,660</td>
<td>-71%</td>
</tr>
<tr>
<td>NUMBER OF MILK COWS (thousand heads)</td>
<td>1,736</td>
<td>988</td>
<td>-43%</td>
</tr>
<tr>
<td>COWS PER FARM</td>
<td>35</td>
<td>67</td>
<td>+91%</td>
</tr>
<tr>
<td>VOLUME OF MILK PRODUCED (million hectoliters)</td>
<td>72.3</td>
<td>75.8</td>
<td>+5%</td>
</tr>
<tr>
<td>VOLUME OF MILK PER FARM (hectoliters)</td>
<td>1,449</td>
<td>5,173</td>
<td>+257%</td>
</tr>
</tbody>
</table>

Source: Statistics Canada and Canadian Dairy Commission
History of innovation

- **1950s** Computerization
- **1960s** Laboratories for component testing
- **1970s** Computer from farm to mainframe for input and reports
- **1980s** Electronic data transfer from farms and laboratories; on-farm data entry
- **1990s** Robotic/voluntary milking systems
- **2000s** Handheld devices for data collection and access; RFID
- **2010s** ???

2010 ... On-farm milk analyzers

- **S.A.E. Afikim** – afimilk™ afilab
  - On-Line real time milk analyzer
  - Fat, protein, lactose, SCC indicator
  - Monitors for blood in the milk
  - Combination of above parameters serve as indicators for nutrition and health management

- **lattec** – Herd Navigator™
  - 50:50 Partnership of FOSS and DeLaval
  - Udder health (LDH, enzyme for early detection of CM)
  - Nutrition (urea and BHB, a ketone body)
  - Reproduction monitoring (progesterone)
Electronic milk meters

- Currently supply 7% of data
- Can provide
  - Total yield
  - Milking speed
  - Milk conductivity
- May provide
  - Progesterone levels
  - Milk temperature
  - Component concentration
- RFID may improve reliability of cow ID associated with meter data

Voluntary milking systems

- Also known as robotic parlors
- Most common in Europe
- Depend heavily on automatic data collection
- Require adaptation by DHI to be included
- May provide data not available elsewhere
Other data collection devices

- Electronic scales
- Handheld computers to record health
- Activity monitors
- Weather stations

Why farms should invest in automatic data collection

- Better management
  - More accurate data
  - More characteristics
  - Greater quality control
- Food quality assurance and traceability
- Help genetic improvement?
Trends

- More traits recorded
- Larger herds
- Improved equipment for electronic recording
- Increased worldwide competition among AI organizations
  - Demand for increased data accuracy and comprehensiveness, especially for traits with low heritability

Needs of genetic improvement program

- Continued participation
- Maintained or improved data quality
- Adaptation to change
Benefits to genetic improvement from automatic data collection

- Improved accuracy
- Reduced cost
- More traits

Tradeoffs in adding traits

- Low heritability
- Recording errors
- Difficulty in estimating economic value
- Dissipation of selection differential
Why more traits?

- Goal of a profitable cow
- Selection index
  - Evaluations weighted by economic contribution
- More precise measurement of profitability
  - More accurate profit tracking
  - More accurate selection

How to connect genetic improvement to on-farm data

- Provide value
  - Genetic evaluations
  - Data backup
  - Data quality control
- Compensate for data as a dairy product (like milk)
- Promote connection ease and security
On-farm software

- Must be maintained
- Support
  - Extremely labor intensive
  - Expensive if many platforms
- Central control of updates attractive
- Dedicated uniform hardware?

Systems for farms to provide data

- Current system
  - AI organizations pay for progeny-test daughters
  - Bundled with DHI program
- System managed by AI organizations
  - AI organizations connect to on-farm computers
  - Data quality monitored by AI organizations
- Farm as data vendor
  - Farm markets data to AI organizations
  - Compensation based on quality
Who is in charge?

- AI organizations
  - Establish data connection with progeny-test herds
- DHI
  - Offer test plans that provide desired data
- Farm
  - Market data based on quality
- Cooperation
  - Establish mechanism for equitable resolution of competing interests

Measures of data quality

- Consistency
  - Milk weights vs. milk shipped
  - Calving, progeny birth, breeding, dry dates
- ID accuracy from parentage verification
- Electronic ID
  - Protocols to detect misreads
  - Portion of duplicate or missing cows
- Within-herd heritability
Management vs. genetic improvement

- Large-herd management based on cow groups
- Selection based on evaluation of individuals
- Genetic improvement needs data from individuals

Where genetic improvement needs to go beyond herd mgmt needs

- Accurate ID
- Access to all data
  - Allow efficient research and development of new trait evaluations
  - Sufficient incentive for herds to participate
Herd of the future

- Recording of every milking and determination of components
- DNA from all calves and possibly genotyped
  - Parentage verification
  - Genomic-based evaluation
  - Traceability
- Data delivered to evaluation center daily

The promise of SNP (single nucleotide polymorphisms)

- Provide large number of markers
- Inexpensive to read
  - May allow calculation of EBV at birth
  - May make parentage verification/determination inexpensive
Hurdles for SNP

- Benefits justified by cost
- Convenient DNA collection and accurate labels
- Timely and adequately accurate genomic prediction
- For parentage verification/discovery, genotypes from same SNP required for potential parents

Evaluations on demand

- Estimates of SNP effects updated several times each year
- Genomic prediction calculated as soon as genotype available
**Best practice**

- Collection of accurate data for all relevant traits
- Seamless transfer to evaluation center
- Evaluations calculated with test-day model and including genomic data
- Results available as needed

**What to expect from automatic data collection**
Incentives

- Quality data have value
- Computer capacity on farm minimizes need for central computing
- Economic incentive required for dairies to contribute data to national evaluations
- Appropriate to have incentive based on data quality

Benefits to herds

- Improved management information
- Incentives from AI organizations for providing data
- Improved pedigree accuracy from parentage validation
Impact on national evaluations

- Higher accuracy of current analyzed traits
  - Higher number of records
  - Transcription errors eliminated
  - Computer detection of abnormal values expected
- More traits
  - Body condition score based on electronic scales
  - Mobility
  - Fertility based on progesterone levels
- Higher quality
  - Electronic recording and monitoring
- Lower cost
  - Less labor required as technician cost on test-day eliminated
  - On-farm component determination

Conclusions

- Automated data collection
  - Growing
  - Can improve data quality
- Genetic improvement programs
  - More traits
  - Better inputs
  - Tighter connection to sources