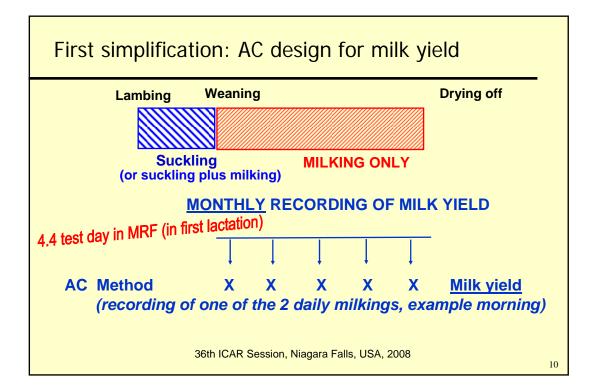
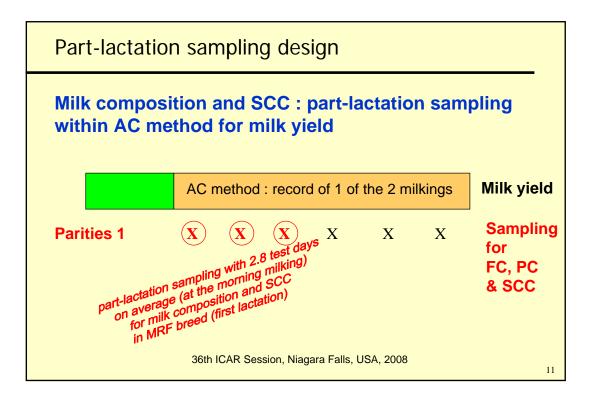

	(J.M. Astruc et al., 2002; A	A. Carta <i>et al.</i> , 2	004; A. Legar	ra <i>et al</i> ., 2	003)
Country	Breed	Period	Annual genetic trend		AI rate in the nucleus flocks
			% population mean	in litres	
FRANCE	Lacaune Manech (Blond-faced)	1986-1999 1986-1999	2.2 % 2.3 %	5.8 1 4.2 1	85 % 54 %
TALY	Sarda	1990-2002	1.2 %	2.0 1	12 %
SPAIN	Latxa (Blond-faced) Latxa (Black-faced)	xxxx-2003 xxxx-2003		2.9 1 3.0 1	





Characteristics of the analysed MRF data				
Characteristics				
Breed Study period Animals in data (first lactation) Animals in pedigree	Manech red faced 2002-2007 58,378 118,313			
Mean ± standard deviation of the traits				
Lactation number Length of milking period, d (after 30-d suckling period)	first lactation 132 d \pm 42			
Milk yield, litre Fat content, g/l (part lactation sampling)	149.2 l ± 63.1 61.1 g/l ± 8.8			
Protein content, g/l (part lactation sampling)	47.8 g/l ± 3.9			
Lactation SCS (LSCS) (part lactation sampling) 3.36 ± 1.38				

	MY	FY	PY	FC	PC	LSCS
MILK yield	0,33	+0,87	+0,92	-0,39	-0,44	+0,21
FAT yield	+0,84	0,28	+0,91	+0,10	-0,16	+0,25
PROTEIN yield	+0,96	+0,82	0,30	-0,16	-0,06	+0,25
FAT content	-0,17	+0,34	-0,16	0,28	+0,60	+0,07
PROTEIN cont.	-0,34	-0,20	-0,04	+0,16	0,51	+0,07
LSCS	-0,26	-0,16	-0,17	+0,16	+0,38	0,10
ritabilities on diagonal <u>Genetic parameters</u> netic correlations above the diagonal 58,378 first lactations vironmental correlations under between 2002 and 20						

Genetic parameters : comparison Lacaune (121,283 first lactations) et MRF (58,378 first lactations)

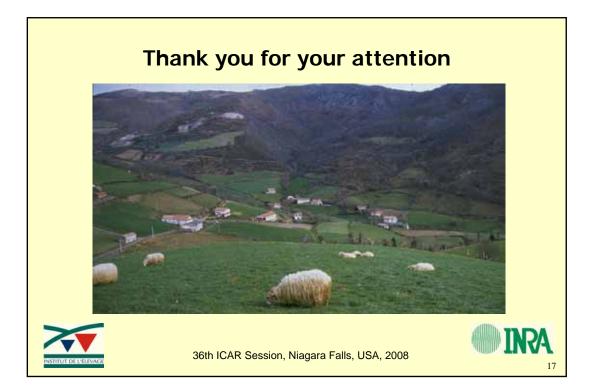
	héritabilities	Genetic correlation with milk yield (MY)
Milk Yield	0,32 et 0,33	
Fat content	0,41 et 0,28	- 0,43 et - 0,39
Protein content	0,51 et 0,51	- 0,48 et - 0,44
LSCS	0,15 et 0,10	0,15 et 0.21
	0,10 0,10	0,10 01 0121

Conclusion (1/2)

Validation of the part-lactation sampling design for SCC in MRF breed as in Lacaune breed (comparable genetic parameters for milk traits and SCC)

Genetic relationship between udder health (SCC) and milk production traits is antagonistic in dairy sheep as in dairy cattle (udder health will be deteriorated when selecting only milk traits)

36th ICAR Session, Niagara Falls, USA, 2008


Conclusion (2/2)

the part-lactation sampling design is relevant both for milk composition and SCC selection in dairy sheep

such a very simplified design (a very few test days recorded per ewe) needs to maintain relevant accuracy for each individual test day as presently defined in ICAR requirements for recording devices and for analytical quality analysis of sheep milk.

36th ICAR Session, Niagara Falls, USA, 2008

15

