Potential Estimation of Minerals Content in Cow Milk Using Mid-Infrared Spectrometry

H. Soyeurt¹, D. Bruwier¹, N. Gengler¹,², J.-M. Romnee³, and P. Dardenne³

¹ Gembloux Agricultural University, Animal Science Unit, Belgium
² National Fund for Scientific Research, Belgium
³ Walloon Agricultural Research Centre, Quality Department, Belgium

Introduction

- Interest for human and animal health:
 - Ca : osteoporosis, milk fever
 - Na : milk fever, alkalosis, indicator of mastitis?

- Dairy products with high Ca content are commercialized to prevent osteoporosis (e.g., Belgium,…)
Introduction

- Regular analysis
- Inductively Coupled Plasma Atomic Emission Spectrometry: ICP-AES
 - Fast
 - Expensive
- Previous studies on the measurement of milk components by Mid-Infrared (MIR) Spectrometry:
 - Fast and cheap
 - %fat, %protein, %fatty acids, %lactose, urea,…

General Objective

- Estimate the contents of the major minerals in cow milk (Ca, Na, and P) by MIR spectrometry
Milk Samples

- 1,609 milk samples:
 - March 2005 and May 2006
 - 478 cows in 8 herds belonging to 6 dairy breeds:
 - dual purpose Belgian Blue, Holstein Friesian, Jersey, Montbeliarde, Normande, and non-Holstein Meuse-Rhine-Yssel type Red and White

- 2 samples:
 - MilkoScan FT6000 during the Walloon milk recording
 - Conserved at -26°C

Calibration

- Selection of samples:
 - Principal Components Approach (PCA)
 - 70 selected samples
 - 9 samples with bad conservation
 - 4 outliers

- Reference analysis:
 - ICP-AES without mineralization
Calibration

- Equations:
 - 57 samples
 - Partial Least Squares (PLS) regressions
 - Repeatability file:
 - Walloon part of Belgium
 - Luxembourg
 - Accuracy: Full cross-validation

Results

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Mean</th>
<th>SD</th>
<th>SECV</th>
<th>R²cv</th>
<th>RPD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na</td>
<td>57</td>
<td>431.39</td>
<td>102.10</td>
<td>57.31</td>
<td>0.69</td>
<td>1.78</td>
</tr>
<tr>
<td>Ca</td>
<td>57</td>
<td>1251.58</td>
<td>157.44</td>
<td>66.98</td>
<td>0.82</td>
<td>2.35</td>
</tr>
<tr>
<td>P</td>
<td>57</td>
<td>1071.02</td>
<td>107.03</td>
<td>51.87</td>
<td>0.77</td>
<td>2.06</td>
</tr>
</tbody>
</table>

SD = Standard deviation; SECV= Standard error of cross-validation; R²cv = Cross-validation coefficient of determination; RPD = the ratio of SD to SECV

- If RPD > 2, good indicator
- Good prediction of Ca and P (high contents)
Real MIR absorbance?

<table>
<thead>
<tr>
<th></th>
<th>Ca (mg/l of milk)</th>
<th>P (mg/l of milk)</th>
<th>%fat (g/dl of milk)</th>
<th>%prot (g/dl of milk)</th>
<th>lactose (g/dl of milk)</th>
<th>urea (g/dl of milk)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na</td>
<td>-0.25</td>
<td>-0.08</td>
<td>-0.49</td>
<td>0.33</td>
<td>-0.76</td>
<td>0.46</td>
</tr>
<tr>
<td>Ca (mg/l of milk)</td>
<td>0.58</td>
<td>0.52</td>
<td>0.21</td>
<td>0.19</td>
<td>-0.37</td>
<td></td>
</tr>
<tr>
<td>P (mg/l of milk)</td>
<td>0.38</td>
<td>0.56</td>
<td>-0.02</td>
<td>0.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>%fat (g/dl of milk)</td>
<td>0.29</td>
<td>-0.41</td>
<td>0.39</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>%prot (g/dl of milk)</td>
<td>0.19</td>
<td>-0.12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lactose (g/dl of milk)</td>
<td>-0.33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Rcv = 0.90
Real MIR absorbance?

<table>
<thead>
<tr>
<th></th>
<th>Ca</th>
<th>P</th>
<th>%fat</th>
<th>%prot</th>
<th>lactose</th>
<th>urea</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na</td>
<td>-0.25</td>
<td>-0.08</td>
<td>-0.49</td>
<td>0.33</td>
<td>-0.76</td>
<td>0.46</td>
</tr>
<tr>
<td>(mg/l of milk)</td>
<td>0.58</td>
<td>0.52</td>
<td>0.21</td>
<td>0.19</td>
<td>-0.37</td>
<td>0.38</td>
</tr>
<tr>
<td>P</td>
<td>0.38</td>
<td>0.56</td>
<td>-0.02</td>
<td>0.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(mg/l of milk)</td>
<td>0.38</td>
<td>0.56</td>
<td>-0.02</td>
<td>0.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>%fat</td>
<td></td>
<td></td>
<td>0.29</td>
<td>-0.41</td>
<td>0.39</td>
<td></td>
</tr>
<tr>
<td>(g/dl of milk)</td>
<td>0.29</td>
<td>-0.41</td>
<td>0.39</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>%prot</td>
<td>0.19</td>
<td>-0.12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(g/dl of milk)</td>
<td>0.19</td>
<td>-0.12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lactose</td>
<td></td>
<td>-0.33</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(g/dl of milk)</td>
<td></td>
<td>-0.33</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Validation

- **Validation:**
 - **Internal validation:**
 - cross-validation
 - **External validation:**
 - samples not used for the calibration procedure
- **30 milk samples**

\[Rcv = 0.88 \]
Validation

Calcium

Phosphorus

$R^2 = 0.95$

$R^2 = 0.84$
Conclusion

- Potential estimation of Ca and P directly on bovine milk

- Prospects for the calibration:
 - Increasing the samples used for the calibration
 - Executing a larger external validation

Prospects

- Genetic variability of minerals
 - Prevent osteoporosis
 - Feeding has a low influence on Ca content
 - Heritability (26,086 data):
 - Calcium: 0.42
 - Phosphorus: 0.47
 - Prevent milk fever?
 - Indicators of mastitis??
Thank you for your attention

Acknowledgments

FNRS:
2.4507.02F (2)
F.4552.05
FRFC 2.4623.08

soyeurt.h@fsagx.ac.be