

Various Projects								
Project		Partnership	Time					
PELOS FINOS "Program to improve Argentinean South American Camelids' fiber production"	EU DG1	Italy, Spain, Argentina	1992- 1995					
SUPREME "Sustainable Production of Natural Resources and Management of Ecosystems : The Potential of South American Camelid Breeding in the Andean Region"	EU DGXII	Italy, Germany, France, U.K., Argentina, Bolivia, Chile, Ecuador, Peru	1996- 2001					
DECAMA "Sustainable Development of Market- Oriented Camelid Products in the Andean Region"	EU INCO DEV	Italy, Germany, Argentina, Bolivia, Peru	2002- 2006					

BACKGROUND

> 1985 desco - Rural Development Colca Canyon Program

- > 1996 desco- Center for Development of Alpacas-Toccra
- > 1997 EU INCO Program (ended in 2001)
- 1998 desco Supreme Program: Formula Selection Plan (Gonzales and Renieri)

2007 – Promege – Genetic Index Determination

DEMOGRAPHIC PARAMETERS OF THE ALPACA POPULATION IN CAYLLOMA

- **200,000** Alpacas
- **90%** Huacaya
- 🗅 10% Suri
- **60% White**
- **40% Color**

SELECTION CRITERIA

Direct observation of animals at birth, by fleece type and color

Produced fiber weight in the first shearing at age one with a confidence interval of ± 2 months (Antonini et al 2004)

Average fiber diameter and the coefficient of variation of fiber obtained during the first shearing through a sample on the left side of the alpaca

Quantitative Features

Fleece weight
Fineness of fiber (diameter)
Coefficient of Variation of the Fiber Diameter

	Tab. 1	. Alpacas Huacay		Suri	(33)
1					
	Color	Female	Male	Female	Male
	White	87	98	12	21
	Brown	21	34		_
	Black	7	8	-	-
	Total	115	140	12	21
	+ 5		other colo Total = 29	ors (Gray, L	JF)

	ТҮ	PE	S	EX	Birth year		
Factors		caya uri		ale nale		2005 2006	
Variable	F	Sig.	F	Sig.	F	Sig.	
Fleece Weight	0,322	0,571	0.28	0,868	0,910	0,763	
Fiber Diameter	2,205	0,139	0,008	0,931	10,461	0.001	
Coefficient of Variation	7,939	0,005	0,057	0,811	2,575	0,110	

Herit	Fleece Weight	nd Correla Fiber Diameter	tions Coefficient of Variation
Fleece Weight	0.84	0.230*	0.377 _{← g}
Fiber Diameter	0.179*	0.32	0.324*
Coefficient of Variation	0.091	0.124*	0.46
f $P \leq 0.0$	001		

	d -Selection	on Index		
	Fleece Weight	Fiber Diameter	Coefficient of Variation	
variable Weight	0.10	0.50	0.40	

HUACAYA <i>n</i> . = 255								
1		♀(115)	් (1	40)			
	Color	+		+	-			
	White	47	40	41	57			
	Brown	15	6	26	8			
	Black	3	4	4	4			
	Overall	65	50	71	69			

SURI (n = 33)									
1	우(12) ♂ (21)								
	Color	÷ (+	-				
	White	5	7	11	10				
	Brown	-	-	-	-				
	Black	- /	-	-	-				
	Overall	5	7	11	10				

Nucleo Families Structure

Alpaca huacaya white (9)

Alpaca huacaya brown (4)

Alpaca suri white (4)

CIRCULAR MATING SYSTEM (Wright, 1921, 1931: Kimura and Crown, 1963)

"Maximum Avoidance of Inbreeding"

- N_e = N
- Avoid close consanguinity (Current inbreeding)

HALF SIB CIRCULAR MATING SYSTEM

Subdivide the nucleo units (families)

Equalize the number of families (EFS = Equalization of family size);

 To reduce the fluctuation of the number of families across generations

CIRCULAR SCHEME

The families form a circle alternatively

> The breeding season is between distant animals in terms of inbreeding

The males in the family breeders pass to the right family

Reproductive Reference Parameter

► Male to female 15

Using males with a replacement:

Nucleo: biannual
 Multipliers every three years
 Average females fertility above 70%

Intensity Selection of the Nucleo

NEGATIVE ALPACA

Males \rightarrow slaughter Females \rightarrow outside the selection plan or slaughter

POSITIVE ALPACA

Male 10% - 20% Nucleus $80\% - 90\% \rightarrow$ Multipliers Female 50% Nucleus $50\% \rightarrow$ Multiples

