

Table of Contents

Tables

Table 1. Definitions of Terms used in these guidelines. ... 5
Table 2. ICAR ADE schema files ... 7
Table 3 XSD schema symbols .. 8
Table 4 UNCEFACT basic data types .. 9
Table 5 UNCEFACT Code Lists .. 9
Table 6 ISO code lists ... 10
Table 7 IANA Code Lists ... 10
Table 8 RequestProcessingStatusCodeType (base xsd:string) .. 13

Equations

Figures

Figure 1. Scope of procedure 1 of Section 15 of ICAR Guidelines. .. 6
Figure 3 Example “GetHerdListRequest” .. 7
Figure 4 Request with a specific request... 13
Figure 5 Response with a Specific Response ... 14
Figure 6 Specific Response Schema ... 14
Figure 7 Standard Response .. 14
Figure 8 ADEExchangedDocumentType .. 16
Figure 9 ADEPartyType .. 17
Figure 10 StandardRequestType ... 17
Figure 11 StandardResponseType ... 18
Figure 12 ErrorType ... 18
Figure 13TicketResponseType ... 19
Figure 14 ZipMessageType .. 19
Figure 15 LocalAdditionalDataType... 19
Figure 16TimePeriodType ... 20

Summary of Changes

Date of

Change
Nature of Change

July 2018 New procedure created from methodogy chapter in Section 15 Overview.

Replaced by new version from ADE-WG. Template applied.

ADE WG feedback used to update last para in 4.2 to better reflect priorities of ADE

WG.

February

2019

Prepared for consideration by General Assembly. Approved on the basis of

Procedures and Appendices being updated periodically under control of ADE WG.

file://///Users/bww/Data/Wickham%20Ltd/Customers/ICAR/ICAR%20SC%20WG%20TF/Guidelines/2018/Section%2015/Revised%20from%20Bert/15%20Procedure%201%20Methodology%20v18.01.docx%23_Toc519013524

For electronic data exchange a lot of technologies exist and new technologies are continously
evolving. However, in order to establish standardized data exchange we have to concentrate
on a defined set of accepted and mature technologies and describe the usage in detail.

This procedure, as part of Section 15 Guidelines, introduces the common methodology and
technology used by the specific business processes described in procedures 2, 3 and 4:

a. General Data Transport Specifications
describes the applied web service transport protocols and data protocols

b. Access to the Service
describes some aspects to be taken into account when implementing and installing
the services

c. Communication work flow
covers the communication work flow aspects in a business process session like
request, response and data processing.

d. Dealing with Local Requirements
describes in detail how locally obligatory data elements which are not covered by the
ICAR scope can be added to the interfaces

e. Common Components
describes all the common protocol components which are reused in the specific
business processes

Table 1 contains a list of important definitions for terms and abbreviations used in these guidlelines.

Table 1. Definitions of Terms used in these guidelines.

Term Definition

TCP/IP Transmission Control Protocol

HTTP Hyper Text Transfer Protocol

XML Extensible Markup Language

XSD XML Schema Definition

SOAP Simple Object Access Protocol

WSDL Web Service Description Language

REST Representational State Transfer

ADIS Agricultural Data Interchange Syntax

ADED Agricultural Data Element Dictionary

JSON JavaScript Object Notation

UNCEFACT UN/CEFACT is the United Nations Centre for Trade Facilitation and Electronic

Business

ISO International Organization for Standardization

IANA Internet Assigned Numbers Authority

 gives a pictorial summary of the main elements of this procedure. The numbers in this figure refer to

the heading numbers of this procedure.

For the primary data transmission method the W3C standard SOAP/XML version 1.2 has
been chosen. Detailed descriptions of this standard can be found here:

http://www.w3.org/TR/2007/REC-soap12-part0-20070427/

Since a “top down” approach has been adapted, ICAR ADE provides WSDL files and a set of
XSD files which make up a complete set of machine readable definition files from which
SOAP web service implementations can be created. Most modern programming languages
e.g. Java, .NET etc. provide tools which facilitate an easy setup process of interfaces classes to
be used as a link between data transport layer and business process layer.

For each release of the ICAR ADE specifications a specific set of WSDL/XSD files can be
downloaded from the ICAR ADE website – link here. See Table 2. ICAR ADE schema files”
for a description of the files. The files will be provided in a zip archive file e.g.
“ADE_Schema20150309_1.8.zip” for version 1.8 available here.

The WSDL/XSD files describe different aspects of the transport protocol:

f. Service end points

g. Input and output messages

h. Basic data type definitions (XSD types, UNCEFACT types etc.)

i. Complex data type definitions
(entity tags, item tags, compositions, attributes, usage of basic data types)

j. Constraints (data type and value range restrictions)

4.	General	Data	Transport	Specifications

5.	Access	to	the	Service

8.	Common	Components

7.	Dealing	with	Local	Requirements

6.	Communication	work	flow

9.	Naming	Rules

8.	References

Figure 1. Scope of procedure 1 of Section 15 of ICAR Guidelines.

http://www.w3.org/TR/2007/REC-soap12-part0-20070427/
https://icar-web.atlassian.net/wiki/spaces/ADE/overview
https://icar-web.atlassian.net/wiki/spaces/ADE/pages/1835044/WSDL-files+1.8

Table 2. ICAR ADE schema files

File Name /

File Name Schema

File Description

*.XSD XML Schema Definition files, machine readable description of the ICAR ADE

XML data structures

ICAR_*.XSD Data element definitions created by the ICAR ADE group

ISO_*.XSD Data element definitions derived from ISO standards

UNECE_*.XSD XSD files provided by the UN/CEFACT project:

(see http://www.unece.org/cefact/xml_schemas/index.html)

UnqualifiedDataType_13p0.XSD XSD file which defines the unqualified UNCEFACT data types. These data types

extend the standard XSD data types with additional attributes. In the ICAR

and UNCEFACT definitions they are used instead of the standard XSD types.

CODE XSD files defining code lists

wsMrAde.wsdl ICAR ADE SOAP service description, (WSDL = Web Service Description

Language)

It defines a set of message pairs each consisting in a request and a response

message.

ADE_v1p8.xsd This file provides the entry point to the ICAR ADE message data structure

definitions

Throughout this document messages and data definitions are illustrated using graphical
presentations of XSD structures created by the commercial software XMLSPY from ALTOVA.

See for example Figure 2 Example “GetHerdListRequest”

Figure 2 Example “GetHerdListRequest”

Below the symbols used to represent the XSD schemas in the following pages:

 icar:GetHerdListRequestType

 GetHerdListRequest

 type icar:GetHerdListRequestType

 icar:MessageHeader icar:

 type icar:ADEExchangedDocumentType

 icar:StandardRequest icar:

 type icar:StandardRequestType

 icar:SpecificRequestGetHerdListType

 icar:SpecificRequestGetHerdList icar:

 type icar:Specif icRequestGetHerdListType

 icar:DataToBeCompressed icar:

 type udt:IndicatorType

 pattern false true

 icar:SpecificRequestDetail icar:

 icar:TicketRequest icar:

 type icar:TicketRequestType

 icar:HerdListRequestType

 icar:HerdListRequest icar:

 type icar:HerdListRequestType

 icar:Gender icar:

 type gc:GenderCodeType

 icar:Periode icar:

 type udt:MeasureType

 icar:Location icar:

 type udt:IDType

Table 3 XSD schema symbols

Parallel to SOAP other international transport protocols exist. This is for example the ISO
ADIS/ADED standard and its last extensions described in ISO 17532(2007). On the other
hand the REST protocol, based on the HTTP transport protocol using XML, JSON and other
data encoding technology, has gained a broader acceptance in the domain of internet data
transfer during the recent years.

The ADE-WG is working on the development of a standardized REST-API description.

Elements created within the process of the ICAR ADE specification can be identified by the
prefix “icar:” within the WSDL/XSD files and descriptions below.

All data items are based on UNCEFACT data types (see section UNCEFACT Data Types)

A detailed description of the data elements is given below.

It is the aim of the ICAR ADE standardization process to make as far as possible use of
elements already defined within existing standardization frameworks as ISO, IANA and
UNCEFACT.

The ICAR ADE WSDL/XSD definitions make extended use of UNCEFACT basic types.

UNCEFACT basic types are types derived from basic XSD types. The concept consists mainly
of adding further attributes and restrictions to the XSD types. They are defined in file
UnqualifiedDataType_13p0.xsd.

In the WSDL/XSD files and descriptions below those elements can be identified by the prefix
“udt:”

Table 4 UNCEFACT basic data types” lists the UNCEFACT types currently used for the types
of a data item.

Table 4 UNCEFACT basic data types

Name Description Comment XSD
Type

udt:CodeType

A character string
that may be used to
represent or replace
the definitive value.

A code is referring to
an enumeration

String

udt:DateType A particular point in
the progression of
date

Representation as
defined by transport
protocol

String

udt:DateTimeType A particular point in
the progression of
time

Representation as
defined by transport
protocol

String

udt:IDType A character string
used uniquely to
establish the
identity of, and
distinguish, one
instance of an
object within an
identification
scheme from all
other objects within
the same scheme.

 String

udt:MeasureType A numeric value
determined by
measuring an object

Measures are specified
with a unit attribute
holding a measure
unit, a resolution and
when it is required a
minimum and a
maximum value.

Decimal

udt:NameType A word that
constitutes the
distinctive
designation of a
person, place, thing,
or concept

 String

udt:BinaryObjectType Base64 coded
binary data

Used e.g. for zip
compressed message

String

udt:TextType A general text type String
udt:IndicatorType A Boolean indicator

or true and false
 Boolean

UNCEFACT provides an extensive set of code lists. See Table 5 UNCEFACT Code Lists” for
the code lists used by the ICAR ADE specifications.

Table 5 UNCEFACT Code Lists

Code List Description

AgencyIdentificationCode A list of agencies responsible for code list maintenance to be used as value of

the attribute listAgencyID in the UNCEFACT data type udt:CodeType

CharacterSetEncodingCode A list of character set encoding codes to be used as value of the attribute

encodingCode in the UNCEFACT data type xsd:base64Binary

MeasurementUnitCommonCode An extensive set of commonly used units to be used as value of the attribute

unitCode in the UNCEFACT data type udt:MeasureType

See Table 6 ISO code lists for the ISO code lists used by the ICAR ADE specifications.

Table 6 ISO code lists

Code List Description

ISO3AlphaCurrencyCode A list of ISO currency codes to be used as value of the attribute currencyID in the

UNCEFACT data type udt:AmountType

ISOTwoletterCountryCode A list of two letter ISO country codes to be used as value of the item Country

See Table 7 IANA Code Lists for the IANA code lists used by the ICAR ADE specifications.

Table 7 IANA Code Lists

Code List Description

CharacterSetCode A list of IANA character set codes to be used as value of the attribute characterSetCode in

the UNCEFACT data type xsd:base64Binary

MIMEMediaType A list of IANA MIME media type codes to be used as value of the attribute mimeCode in the

UNCEFACT data type xsd:base64Binary

The equipment should provide the operator with an interface to capture exchange parameters for a

given service provider consisting of:

a. Service provider URL

b. Authentication information (user/password, token)

c. Sender ID

d. Sender name

e. Sender country

f. Recipient ID

g. Recipient name

h. Recipient country

i. Type of location

j. Type of identifier of the location

k. Identifier of the location

l. Name of the location

m. Country of the location

n. Type of primary animal identifier

o. Type of secondary animal identifiers (e.g. on farm animal id, animal name)

p. Other manufacturer or service provider specific parameters

For a given service provider the exchange parameters should be the same for all the consumed

services.

As the services are not permanently accessible, no request should be sent by the equipment before

having checked if there is access to:

a. The network

b. The service provider server

c. The service itself

Any new data should be registered by the information system as soon as possible.

No new data should be sent to the information system as long as previous data is still being

processed. The service consumer has to wait for a processing result or a ticket in case of

asynchronous processing.

No ticket should be sent to the information system before the time given by the information system.

Any message whose syntax is not in compliance with the syntax requirements should not be sent.

As soon as a data is included in a request an answered by a response it should be considered as sent

to the information system.

Service providers and consumers should be prepared for updates and deletes. The service provider

should take also take into account that the sending party is declaring updates as a create operation

not knowing that the data is already present in the service provider’s data base. (e.g. in case of

retransmission initiated by the consumer)

Preparing a request in compliance with business requirements should be performed separately from

preparing a message whose syntax depends on the type of technical mapping (web service with

SOAP at the moment).

If possible encryption should be used in order to insure privacy and authenticity. The process of

encryption itself is not described here. The encryption capabilities of the applied transport protocol

should be used e.g. HTTPS for HTTP-Transport.

In order to minimize the transport delay of big messages, especially when coded in xml, compression

should be applied. Some transport protocols offer compression features like transparent gzip

compression of http responses. However since http compression is only applicable to the response it

is not usable for the compression of data loads in http requests.

In order to avoid this limitation a special XML based compression mechanism is described for ICAR

data exchange. Specific messages can be defined as zip compressible offering the alternative of

uncompressed or zip compressed Base64 binary encoded xml structures both for request and

response. For details see chapter “Message Design” below.

The right of a given user to use a given service is verified by either using an “authentication token”

which prevents him from sending a user ID and a password at each request or by a user name

authenticated by a password.

Authentication by user name and password should only be used with encrypted transport.

Any service may be provided either in real time or in time differed.

A response should be sent to any response within several seconds.

Any request and any response should be stored by the equipment and the information system.

The requirements to update the data base of the information system differ from one service provider

to another one.

Any request which is not in compliance with one the following conditions should not be processed:

a. Compliance with the syntax

b. Validity of the identification token

c. Validity of the ticket if any

Any request should consist of three parts:

a. A single message header
(see the entity MessageHeader of Type “ADEExchangedDocumentType”
in ‘Data description’)
The sender of the request creates and provides his own unique MessageID
(Item ADEExchangedDocumentType.Identifier).
See chapter “Best Praxis for MessageID Creation” below.

b. A single standard request
 (see the entity StandardRequest in ‘Data description’)

c. A specific request which may consist of
a specific message for a given service
or the zip compressed base64 binary of the specific message
or a ticket.
A ticket is sent in order to retrieve the results of an asynchronous message processing
task. (see diagrams below)

Figure 3 Request with a specific request

Any messsage response should consist of three parts:

a. A single message header (see the entity MessageHeader of Type
“ADEExchangedDocumentType” in ‘Data description’)
The sender of the response creates and provides his own unique Message id.
(See chapter “Best Praxis for MessageID Creation” below)

b. A single standard response (see the entity StandardResponse in ‘Data description’)
In the standard response the original MessageID from the sender is returned in the
item RequestID.
The standard response contains the item RequestProcessingStatus which identifies
the status of the request processing on the side of the service provider:

Table 8 RequestProcessingStatusCodeType (base xsd:string)

Key Description

O Processed without errors

P

Data accepted for asynchronous processing (client can retrieve the

processing result later using provided ticket)

E Processed and rejected due to errors

W Processed with warnings

c. A specific response which may consist of either a ticket or specific message for a given
service or the zip compressed base64 binary of the specific message.
The existence and content of the specific response depends on the definition of the
service and the content of the RequestProcessingStatus item.
In case of RequestProcessingStatus = ‘P’ the specific response holds a Ticket
If a specific response message is defined it can either be represented uncompressed or
zip compressed of type Base64binary.
If RequestProcessingStatus = ‘P’, ‘E’ or ‘W’ there might be no specific response at all
depending on the message definition.

R
EQ

U
EST

Header

Standard request

Specific request

Figure 4 Response with a Specific Response

Figure 5 Specific Response Schema

Figure 6 Standard Response

The message ID created by both service consumer and service provider should be globally
unique in order to allow a simple identification of each message e.g. for tracing and
debugging purposes.

The MessageID should be based on a chain of unique hardware identifier, a unique software
identifier and an additional distinguishing component large enough to uniquely identify
messages created at very fast rates. This dynamic component could be a timestamp with ms
precision or a sequence. The unique hardware identifier could be the globally unique MAC
address of the network interface. The unique software identifier should be unique on the
system running the software.

There are tools in different programming languages which provide simple means of unique id
creation e.g. Guid.NewGuid() in C#

R
ESP

O
N

SE

Header

Standard
response

Specific response

R
ESP

O
N

SE

Header

Standard
response

The ICAR ADE standardization process cannot take into account all local requirements. In
the first place it offers a common basis to build on.

In the first place “local” is a placeholder for national standards. However it is also possible to
add local extensions based on an agreement between a service consumer and a service
provider (e.g. for special projects, prototypes etc.).

In order to allow local extensions and to fill standardization gaps which cannot be covered by
ICAR the ADE specifications provide two ways of local variations and extensions:

a. Local Code Lists:
Local code lists for all items of type udt:CodeType for which ICAR is not yet able to
provide a commonly accepted code set

b. Local Additional Data:
An optional list of key value pairs in each specific entity to be used for locally required
data elements

Local variation should be reduced to a minimum since it is contradictory to the goal of ICAR to

establish global standards, leads to increased complexity, complicates software development and

creates additional costs.

Local code lists must be provided for items of type udt:CodeType in the context of a local
standardization process, e.g. breed codes.

The content cannot be checked with the SOAP/XML validation procedure but must be
evaluated in an extra program step before filling the XML data structures and after extracting
the data from the XML structures. It is the responsibility of the software developers to assure
that the data exchange is in accordance to ICAR and to local specifications.

In order to help manufacturers with the maintenance and integration of local code lists these

specifications define the service GetLocalCodeList which can be used to query local code lists from

the local service providers. For details see section “Technical Services”.

Sometimes it is necessary for local implementations of the ICAR messages to add local data
items to the specific messages which are not known or not covered by the ICAR specification
process.

For those scenarios a simple and flexible extension (LocalAdditionalData) has been added
to each specific entity.
It consists of an optional list of code/value pairs of type udt:textType which can be filled
according to local definitions.

It is the responsibility of the local business process owners to document and assure the
proper handling of this code/value pairs. The ICAR wsdl/xsd definitions only check the
proper usage of the XML structure not the content.

For details see the wsdl/xsd files and the section

“CommonComponents”-”LocalAdditionalDataType”.

This part describes common components which are used in all the specific services described in anex

B, C and D.

The entity ADEExchangedDocumentType (Figure 7 ADEExchangedDocumentType)
gives information describing general aspects of the message.

Used by data element: MessageHeader

Figure 7 ADEExchangedDocumentType

a. Identifier: Unique identifier of the message given by the sender

b. Issueing: The date and the time where the message is issued.

c. Version: Version number of the message

d. Language: Language used for the message

e. LocalAdditionalData: Optional list of key/value pairs used in a local context as
described in section “Common Components – Local Adaptions”

f. SenderParty: Organization or person responsible for the content of the message,
not a server identifier.

g. RecipientParty: Organization or person responsible for processing the message, not
a server identifier.

The entity ADEPartyType (Figure 8 ADEPartyType) gives the name and the identifier of a
party which may be either the sender or the recipient of a message.

Used by data elements: SenderParty, RecipientParty

 <ccts:Definition>A collection of data for a

 piece of w ritten, printed or electronic

 matter that is exchanged between two or

 more parties in a A nimalC oreData (A C D)

 document exchange.</ccts:Definition>

 ADEExchangedDocumentType

 <ccts:Definition>The

 identifier of this A DE

 exchanged

 document.</ccts:Definition>

 icar:Identifier icar:

 type udt:IDType

 <ccts:Definition>The date,

 time, date time or other date

 time v alue for the issuance

 of this exchanged

 document.</ccts:Definition>

 icar:Issueing icar:

 type udt:DateTimeType

 icar:Version icar:

 type udt:NumericType

 icar:Language icar:

 type clm5ISO63912A:ISO2AlphaLanguageCodeContentT...

 icar:ADEPartyType

 icar:SenderParty icar:

 type icar:ADEPartyType

 icar:Name icar:

 type udt:NameType

 icar:ID icar:

 type udt:IDType

 icar:Country icar:

 type iso316612a:ISOTw oletterCountryCodeIdentif ierCont...

 icar:ADEPartyType

 icar:RecipientParty icar:

 type icar:ADEPartyType

 icar:Name icar:

 type udt:NameType

 icar:ID icar:

 type udt:IDType

 icar:Country icar:

 type iso316612a:ISOTw oletterCountryCodeIdentif ierCont...

Figure 8 ADEPartyType

 Name: Identifier of the specified party

 ID: Identifier of the specified party

 Country: Country of the specified party in accordance to code list

ISOTwoletterCountryCodeIdentifierContent

The entity StandardRequestType (Figure 9 StandardRequestType) gives the standard
content of a request.

Two different types of authentication can be used, token or user/password based.

Used by data element: StandardRequest

Figure 9 StandardRequestType

a. AuthenticationToken: temporal code used for verification of the user’s identity
and of its right to use a service.

b. AuthentificationLogin: Pair of username and password used for login

c. UserName: User name used for authentication

d. Password: Password used for authentication

The entity StandardResponseType (Figure 10 StandardResponseType) gives the
standard content of a response.

Used by data element: StandardResponse

 ADEPartyType

 icar:Name icar:

 type udt:NameType

 icar:ID icar:

 type udt:IDType

 icar:Country icar:

 type iso316612a:ISOTw oletterCountryCodeIdentif ierCont...

 StandardRequestType

 icar:AuthenticationToken icar:

 type udt:TextType

 icar:AuthentificationLogin icar:

 icar:UserName icar:

 type udt:TextType

 icar:Password icar:

 type udt:TextType

Figure 10 StandardResponseType

a. RequestProcessingStatus: Status of request processing returned by server
according to code list RequestProcessingStatusCode

b. RequestID: Copy of the message identification in the request’s
MessageHeader.Identifier item

c. RequestProcessingError: In case an error happens during the processing of the
request an error description is provided here

The entity ErrorType (Figure 11 ErrorType) gives the request processing errors.

Used by data element: RequestProcessingError

Figure 11 ErrorType

a. ErrorID: Identifier the error, e.g. error text message, local error code etc.

b. ErrorSeverity: Severity of the error according to code list ErrorSeverityCode

c. ErrorDescription: Human readable description of the error as text

The entity TicketResponseType (Figure 12TicketResponseType) conveys a ticket in order
to retrieve a response processed in time differed (asynchronous processing mode).

It is used in SpecificRequest and SpecificResponse by data element TicketResponse.

 StandardResponseType

 icar:RequestProcessingStatus icar:

 type rpsc:RequestProcessingStatusCodeType

 icar:RequestID icar:

 type udt:IDType

 icar:ErrorType

 icar:RequestProcessingError icar:

0..

 type icar:ErrorType

 icar:ErrorID icar:

 type udt:TextType

 icar:ErrorSeverity icar:

 type esc:ErrorSeverityCodeType

 icar:ErrorDescription icar:

 type udt:TextType

 ErrorType

 icar:ErrorID icar:

 type udt:TextType

 icar:ErrorSeverity icar:

 type esc:ErrorSeverityCodeType

 icar:ErrorDescription icar:

 type udt:TextType

Figure 12TicketResponseType

a. TicketID: Identify the response to retrieve

b. NotBefore: Date time of probable response availability

ZipMessageType (Figure 13 ZipMessageType) is a wrapper type designed to transport the
zip compressed version of the specific data part of a message. Contrary to http compression
method which can only be used for the response part this method can be applied to request
and response. It is defined as a choice for each specific request or response which transports
data entities.

Figure 13 ZipMessageType

a. ZIPMessage: zip compressed data

The entity LocalAdditionalDataType (Figure 14 LocalAdditionalDataType) is a container
for code value pairs for local usage outside the ICAR specification scope.

It is used as an optional list element LocalAdditionalData in each specific entity.

Figure 14 LocalAdditionalDataType

a. AdditionalDataCode: Name of the code value pair

b. AdditionalDataValue: Value of the code value pair

c. AdditionalDataComment: Optional description of the local data

The utility type TimePeriodType (Figure 15TimePeriodType) is a wrapper type designed to
transport the beginning and end of a time period.

 TicketResponseType

 icar:TicketID icar:

 type udt:IDType

 icar:NotBefore icar:

 type udt:DateTimeType

 ZipMessageType
 icar:ZIPMessage icar:

 type udt:BinaryObjectType

 A dded in v ersion 1.1

 LocalAdditionalDataType

 icar:AdditionalDataCode icar:

 type udt:CodeType

 icar:AddtionalDataValue icar:

 type udt:TextType

 icar:AdditionalDataComment icar:

 type udt:TextType

Figure 15TimePeriodType

a. StartTime: The start of the time period

b. EndTime: The optional end of the time period

Names of data elements, operations and messages use upper camel case.

Service name consist of:

a. A prefix which gives the type of operation according the following:

- Create: Insert data into a data base

- Update: update of a data base

- Get: retrieve data from data base

- Delete: delete data from data base

b. The name of the service

For example UpdateMilkingResult is the service which allows updating a data base from
milking results exchange.

Message name consists of:

a. The name of the service

b. A suffix, gives the type of message:

- Request

- Response

For example, UpdateMilkingResultRequest is the request to trigger the service
UpdateMilkingResult.

1. Semantics for Smart Dairy Farming: a milk production registration standard – SDF June 2013

2. UN / UNCEFACT Modeling Methodology User Guide (CEFACT / TMG/N093)

3. UN / UNCEFACT Business Requirements Specifications Document Template
(CEFECT/ICG/005)

4. ISO 11787 : Electronic data interchange between information systems in agriculture —
Agricultural data interchange syntax

5. ISO 11788 : Electronic data interchange between information systems in agriculture —
Agricultural data element dictionary —Part 1: General description —Part 2: Dairy farming

6. ISO 17532 : Stationary equipment for agriculture —Data communications network for livestock
farming

7. ISO 11784: Radio frequency identification of animals - code structure

 A dded in v ersion 1.1

 TimePeriodType

 icar:StartTime icar:

 type udt:DateTimeType

 icar:EndTime icar:

 type udt:DateTimeType

8. ISO 3166 -1 : Country code

9. ICAR G

	1 Introduction
	2 Definitions and Terminology
	3 Scope
	4 General Data Transport Specifications
	4.1 SOAP/XML Web Services
	4.2 Alternative Transport Protocols (ADIS/ADED/IsoAgriNet, REST)
	4.3 ICAR Types and Code Lists
	4.4 External Elements
	4.4.1 UNCEFACT Data types
	4.4.2 UNCEFACT Code Lists
	4.4.3 ISO Code Lists
	4.4.4 IANA Code Lists

	5 Access to the Service
	5.1 Exchange Parameters
	5.2 Data Transmission
	5.3 Encryption
	5.4 Compression
	5.5 User Right Verification

	6 Communication work flow
	6.1 Data Processing
	6.2 Request Specification
	6.3 Response Specification
	6.4 Best Praxis for Message-Id Creation

	7 Dealing with Local Requirements
	7.1 Local Code Lists
	7.2 Local Additional Data

	8 Common Components
	8.1 ADE Exchanged Document Type
	8.2 ADE Party Type
	8.3 Standard Request Type
	8.4 Standard Response Type
	8.5 Error Type
	8.6 Ticket Response Type
	8.7 ZIP Message Type
	8.8 Local Additional Data Type
	8.9 Time Period Type

	9 Naming Rules
	10 References

