Section 5 - ICAR Guidelines for Conformation Recording of Dairy Cattle, Beef Cattle, Dual Purpose Cattle and Dairy Goats

Section 5 – Conformation Recording
Version June 2018
Table of Contents

1 Conformation recording of dairy cattle ... 4
 1.1 Linear Type Traits ... 4
 1.2 Standard Traits .. 4
 1.3 Standard trait definition ... 5
 1.4 Genetic evaluation ... 18
 1.4.1 Type Inspection System – Genetic Evaluation .. 18
 1.4.2 Evaluation Model .. 18
 1.4.3 Publication of Information ... 18
 1.5 Composite traits and general characteristics .. 18
 1.5.1 Composite traits .. 18
 1.5.2 General Characteristics ... 19

2 Conformation Recording of Dual Purpose Cattle ... 20
 2.1 Linear Type Traits ... 20
 2.2 Standard Traits .. 20
 2.3 Approved Standard Traits ... 20
 2.4 Standard Trait Definition .. 21
 2.5 Genetic evaluation ... 33
 2.5.1 Type Inspection System – Genetic Evaluation .. 33
 2.5.2 Evaluation Model .. 33
 2.5.3 Publication of Information ... 33
 2.6 Composite traits and General characteristics .. 33
 2.6.1 Composite Traits .. 33
 2.6.2 General Characteristics or Breakdown for Non Linear Traits 34

3 Conformation recording of beef cattle .. 35
 3.1 Linear Type Traits ... 35
 3.2 Standard Traits .. 35
 3.3 Standard trait definition ... 36
 3.4 Composite traits and general characteristics .. 56
 3.4.1 Composite traits .. 56
 3.4.2 General characteristics ... 56

4 Conformation recording of dairy goats .. 57
 4.1 Linear Type Traits ... 57
 4.2 Standard Traits .. 57
 4.3 Standard Trait Definition .. 58
 4.4 Composite traits and general characteristics .. 68
 4.4.1 Composite Traits .. 68
 4.4.2 General characteristics ... 68

5 Improving data quality and monitoring classifiers .. 70
 5.1 Introduction ... 70
 5.2 Practical aspects on type classification system ... 70
 5.3 Training and monitoring of classifiers ... 70
 5.3.1 National group training sessions ... 71
 5.3.2 Statistical monitoring of individual classifiers 72
5.4 Auditing a classification system

6 Recommendation on scoring conformation defects in cattle

6.1 Introduction

6.2 Description of defect

6.3 Approved standard defects

Change Summary

<table>
<thead>
<tr>
<th>Date of Change</th>
<th>Nature of Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>July 17</td>
<td>Reformed using new template.</td>
</tr>
<tr>
<td>July 17</td>
<td>Table of contents added.</td>
</tr>
<tr>
<td>July 17</td>
<td>Heading numbers and heading text edited for clarity and removal of redundant text.</td>
</tr>
<tr>
<td>August 17</td>
<td>Stopped Track change and accepted all previous changes.</td>
</tr>
<tr>
<td>August 17</td>
<td>Moved the file to the new template (v2017_08_29).</td>
</tr>
<tr>
<td>August 17</td>
<td>Heading edits to make shorter.</td>
</tr>
<tr>
<td>October 2017</td>
<td>Version updated to August 17.</td>
</tr>
<tr>
<td>October 2017</td>
<td>Hyperlinks have been corrected.</td>
</tr>
<tr>
<td>October 2017</td>
<td>At instigation of Conformation Working Group added two chapters to the guidelines: conformation recording for dual purpose cattle and recommendations for scoring defects in cattle. Minor changes to introduction to reflect these changes.</td>
</tr>
<tr>
<td>February 2018</td>
<td>On Saturday 10th February, changes approved at ICAR Assembly in Auckland, New Zealand.</td>
</tr>
<tr>
<td>May 2018</td>
<td>Fixed some inconsistencies as noted by Dorota Krecnik by her email (23 May).</td>
</tr>
<tr>
<td>June 2018</td>
<td>Title amended to include Dual Purpose Cattle.</td>
</tr>
</tbody>
</table>
This document contains a description of conformation traits scored in dairy cattle breeds, dual purpose cattle, beef cattle breeds and dairy goats. For the four groups a separate trait list has been established. For the traits trait definitions are given in wording and with drawings.

Besides giving trait definitions, recommendations are given on improvement and transparency of data collection and monitoring classifiers.

For the dairy, dual purpose and beef cattle breeds a recommendation on scoring conformation defects is given.

1 Conformation recording of dairy cattle

The ICAR multi dairy breed conformation recording recommendation integrates with the World Holstein-Friesian Federation guidelines on the international harmonization of linear type assessment, trait definition, evaluation standards and publication of type proofs for bulls.

This document contains a list of approved standard traits, which is a list of traits which should be scored by all organisations in the same way to improve further harmonisation on international level, also on Interbull level. The data collected within these recommended standards qualifies for MACE evaluation by Interbull.

Further the document contains a list of 5 traits which are commonly used by organisations in the dairy and dual-purpose breeds world-wide. This list of common standard traits is added to improve harmonisation of these traits too.

Besides giving trait definitions on standard traits, recommendations are given on improvement and transparency of data collection and monitoring classifiers.

1.1 Linear Type Traits

Linear type traits are the basis of all modern type classification systems, and are the foundation of all systems for describing the dairy cow. Linear classification is based on measurements of individual type traits instead of opinions. It describes the degree of trait not the desirability.

a. Advantages of linear scoring are:
 b. Traits are scored individually.
 c. Scores cover a biological range.
 d. Variation within traits is identifiable.
 e. Degree rather than desirability is recorded.

1.2 Standard Traits

The standard traits satisfy the following conditions:

a. Linear in a biological sense.
 b. Single trait.
 c. Heritable.
 d. Economic value; Direct or indirect with reference to the breeding goal.
 e. Possible to measure instead of score.
 f. Variation within the population.
g. Each linear trait should describe a unique part of the cow which is not covered by a combination of the other linear traits.

Approved Standard Traits

1. Stature
2. Chest Width
3. Body Depth
4. Angularity
5. Rump Angle
6. Rump Width
7. Rear Legs Set
8. Rear Legs Rear View
9. Foot Angle
10. Fore Udder Attachment
11. Rear Udder Height
12. Central Ligament
13. Udder Depth
14. Front Teat Placement
15. Teat Length
16. Rear Teat Placement
17. Locomotion
18. Body condition score

Common Standard Traits

19. Hock development
20. Bone structure
21. Rear udder width
22. Teat thickness
23. Muscularity

1.3 Standard trait definition

The precise description of each trait is well defined and it is essential that the full range of linear scores to identify the intermediate and extremes of each trait be used. The assessment parameters for the calculations should be based on the expected biological extremes of a cow in the first lactation. The scale must cover the biological extremes of the current population.

Recommended Scale 1 - 9

Note:
The linear scale used, must cover the expected biological extremes of the population in the country of assessment.

1. **Stature**

 Ref. Point: Measured from the top of the spine in between hips to ground. Precise measurement in centimetres or inches, or linear scale.

 1 - Short
 5 - Intermediate
 9 - Tall
2: **Chest Width**

Ref. Point: Measured from the inside surface between the top of the front legs.
- 1 - Narrow
- 5 - Intermediate
- 9 - Wide

3: **Body Depth**

Ref. Point: Distance between top of spine and bottom of barrel at last rib – the deepest point: independent of stature.
- 1 - Shallow
- 5 - Intermediate
- 9 - Deep
4. **Angularity**

Ref. Point: The angle and spring of the ribs; not a true linear trait.
- 1 - Lacks angularity: close ribs, coarse bone
- 5 - Intermediate: with open rib
- 9 - Very angular: open ribbed flat bone

Reference scale: weighing of the two components; angle and spring of the ribs

5. **Rump Angle**

Ref. Point: Measured as the angle of the rump structure from hooks (hips) to pins.
- 1 - High Pins
- 5 - Intermediate
- 9 - Extreme slope

Depending on the population rump angle can be scored level with a score in the range of 3-5.
6. **Rump Width**

 Ref. Point: The distance between the most posterior point of pin bones.
 1 - Narrow
 5 - Intermediate
 9 - Wide

7. **Rear Legs Rear View**

 Ref. Point: Direction of rear feet when viewed from the rear.
 1 - Extreme toe-out
 5 - Intermediate; slight toe-out
 9 - Parallel feet
8. **Rear Legs Set**

bRef. Point: Angle measured at the front of the hock.
- 1 - Straight
- 5 - Intermediate
- 9 – Sickled

If the rear legs set is different, the most extreme one should be scored.

9. **Foot Angle**

bRef. Point: Angle at the front of the rear hoof measured from the floor to the hairline at the right hoof.
- 1 - Very low angle
- 5 - Intermediate
- 9 - Very steep

If the foot angle is different, the most extreme one should be scored.
If the foot angle is difficult to score because of hoof trimming, bedding, manure etc. It is also possible to look at the angle of hairline.
10. Fore Udder Attachment

Ref. Point: The strength of attachment of the fore udder to the abdominal wall. Not a true linear trait
1 - Weak and loose
5 - Intermediate
9 - Extremely strong and tight

11. Front Teat Placement

Ref. Point: The position of the front teat from the centre of quarter as viewed from the rear.
1 - Outside of quarter
5 - Intermediate
9 - Inside of quarter
12. **Teat Length**
Ref. Point: The length of the front teat.
1 - Short
5 - Intermediate
9 - Long

Instead of scoring front teat, the rear teat can be scored. The choice of front teat or rear teat should be consistent in the whole system.

13. **Udder Depth**
Ref. Point: The distance from the lowest part of the udder floor to the hock.
1 - Deep
5 - Intermediate
9 - Shallow

Potential point of reference is the level with the hock.
14. **Rear Udder Height**

Ref. Point: The distance between the bottom of the vulva and the milk secreting tissue: in relation to the height of the animal.

1 - Low
5 - Intermediate
9 - High

15. **Central Ligament**

Ref. Point: The depth of cleft at the base of the rear udder.

1 - Convex to flat floor (flat), broken ligament
5 - Intermediate
9 - Deep cleft/strong ligament
16. **Rear Teat Placement**

Ref. Point: The position of the rear teat from the centre of quarter:
- 1 - Outside of quarter
- 5 - Intermediate
- 9 - Inside of quarter

![Rear Teat Placement Diagram]

17. **Locomotion**

Ref. Point: The use of legs and feet, length and direction of the step
- 1 - Severe Abduction – Short Stride
- 5 - Slight Abduction – Medium Stride
- 9 - No Abduction – Long stride

Score only if the cow can walk (cow has no lameness).

![Locomotion Diagram]
18. **Body Condition Score**

Ref. Point: The covering of fat over the tail head & rump. Not a true linear trait

1 - Poor
5 - Intermediate
9 - Grossly fat

With a score from 1-6 there mainly has to be looked at the loin, while the tail implant is important with the higher score (7-9).

19. **Hock development**

Ref. Point: Cleanness and dryness of the hock.

1 - Hock with a lot of fluid
5 - Intermediate
9 - Complete clean and dry
20. Bone structure

Ref. Point: The thickness and width of the bone structure, assessed by both examining the rear leg from the rear and from the side.
1 - Broad and thick
5 - Intermediate
9 - Flat

21. Rear udder width

Ref. Point: Width of the udder at the point where the milk secretion tissue is attached to the body.
1 - Narrow
5 - Intermediate
9 - Wide
22. Teat thickness

Ref. Point: Thickness of the teat in the middle of the front teat.

- 1 - Thin
- 5 - Intermediate
- 9 - Thick

23. Muscularity

Ref. Point: The amount of muscles as seen in the loins and thighs. Not a linear trait.

- 1 - Poor
- 5 - Intermediate
- 9 - Grossly muscular
1.4 Genetic evaluation

1.4.1 Type Inspection System - Genetic Evaluation
 a. Breeding values for bulls and cows to be based on the classification of cows in the first lactation scored in a herd evaluation system.
 b. In a herd evaluation system all first lactating cows, which have not be previously evaluated, must be scored during the visit of the classifier.
 c. Additional classifications to obtain a bull proof may only be possible if completed by the same organisation and daughters are sampled randomly with sufficient number of herd mates (contemporaries) scored during the same visit. A minimum of 5 first lactating cows, which qualify for genetic evaluation, are inspected at the same visit.

1.4.2 Evaluation Model
 a. Modern BLUP evaluation techniques should be used to obtain accurate unbiased evaluations.
 b. Data should be corrected for influencing factors such as age, stage of lactation and season by the model. Classifiers should not make adjustments during scoring.
 c. Corrections for variation between classifiers are required to avoid heterogeneity of variance.
 d. Herd mates are defined as the contemporaries of the evaluated heifers in the same lactation, scored during the same visit by the same classifier.

1.4.3 Publication of Information
 a. Publish bull-proofs around an average of 0 and a genetic standard deviation of 1.0.
 b. Proofs of widespread bulls should be published as bar graphs covering the range between +3 and -3 standard deviations.
 c. Or: Mean of 100 & the standard deviation in the base population where this standard deviation is adjusted to the situation the proofs of cows have a reliability of 100%.
 d. The base of sire and cow evaluation should follow the definition of the production proofs, given by Interbull. This includes a stepwise fixed base that should be renewed every five years. The base is defined by cows born 5 years previously.

1.5 Composite traits and general characteristics

1.5.1 Composite traits
 a. Composite traits are groups of linear traits relating to one specific area.
 b. The individual linear traits are weighted according to economic breeding objectives.
 c. The main composite traits are - Frame including rump, dairy strength, mammary, feet/legs.
1.5.2 General Characteristics

a. Type classification programmes also include phenotype assessment. These are described as general characteristics or combined traits, which are not linear in a biological sense. A subjective score is given for the desirability of the cow according to the breeding goal.

b. Female animals are inspected, classified and assigned grades/scores ranging from 50-97 points.

c. The most common scale for mature cows (second or more lactations) are:

 - Excellent: 90 - 97 points
 - Very Good: 85 - 89 points
 - Good Plus: 80 - 84 points
 - Good: 79 - 75 points
 - Fair/Poor/Insufficient: 50 - 74 points

d. The awarding of classification grades varies in each country depending upon the breeding goals, and therefore classification scores must be considered in the context of the country of inspection.

e. The final class and score are derived from a breakdown of the main functional areas of the female:
 - Frame including Rump.
 - Dairy Strength.
 - Mammary System.
 - Legs/Feet.

f. The weighting of the component breakdown scores should meet the breeding goals in the Country of inspection. It is recommended that for first lactating cows the range of scores used is 70 - 90 points. The average score is always in the middle of the maximum and minimum a first lactating cow can be awarded.
2 Conformation Recording of Dual Purpose Cattle

This document contains a list of approved standard traits, which is a list of traits which should be scored by all organisations in the same way to improve further harmonisation on international level, also on Interbull level. The data collected within these recommended standards qualifies for MACE evaluation by Interbull.

Further the document contains a list of 5 traits which are commonly used by organisations in the dairy and dual-purpose breeds world-wide. This list of common standard traits is added to improve harmonisation of these traits too.

Besides giving trait definitions on standard traits, recommendations are given on improvement and transparency of data collection and monitoring classifiers.

2.1 Linear Type Traits

Linear type traits are the basis of all modern type classification systems, and are the foundation of all systems for describing the dairy cow. Linear classification is based on measurements of individual type traits instead of opinions. It describes the degree of trait not the desirability.

Advantages of linear scoring are:

a. Traits are scored individually
b. Scores cover a biological range
c. Variation within traits is identifiable
d. Degree rather than desirability is recorded

2.2 Standard Traits

The standard traits satisfy the following conditions:

a. Linear in a biological sense
b. Single Trait
c. Heritable
d. Economic value; Direct or indirect with reference to the breeding goal
e. Possible to measure instead of score
f. Variation within the population
g. Each linear trait should describe a unique part of the cow which is not covered by a combination of the other linear traits

2.3 Approved Standard Traits

1. Stature
2. Chest Width
3. Body Depth
4. Rump Angle
5. Rump Width
6. Rump Length
7. Muscularity
8. Rear Legs Set
9. Hock Development
10. Foot Angle
11. Locomotion
12. Fore Udder Attachment
13. Rear Udder Height
14. Central Ligament
15. Udder Depth
16. Fore Udder Length
17. Front Teat Placement
18. Teat Length
19. Teat Thickness
20. Rear Teat Placement
21. Teat Direction

2.4 Standard Trait Definition

The precise description of each trait is well defined and it is essential that the full range of linear scores to identify the intermediate and extremes of each trait be used. The assessment parameters for the calculations should be based on the expected biological extremes of a cow in the first lactation. The scale must cover the biological extremes of the current population.

Recommended Scale 1 - 9

Note: The linear scale used, must cover the expected biological extremes of the population in the country of assessment.
1. **Stature**
 Ref. Point: Measured from the top of the spine in between hips to ground. Precise measurement in centimetres or inches, or linear scale.
 1 Short
 5 Intermediate
 9 Tall

2. **Chest Width**
 Ref. Point: Measured from the inside surface between the top of the front legs.
 1 Narrow
 5 Intermediate
 9 Wide
3. **Body Depth**

Ref. Point: Distance between top of spine and bottom of barrel at last rib – the deepest point: independent of stature.

- 1 Shallow
- 5 Intermediate
- 9 Deep

4. **Rump Angle**

Ref. Point: Measured as the angle of the rump structure from hooks (hips) to pins.

- 1 High Pins
- 5 Intermediate
- 9 Extreme slope

Depending on the population rump angle can be scored level with a score in the range of 3-5.
5. **Rump Width**

Ref. Point: The distance between the most posterior point of pin bones.

1. Narrow
2. Narrow
3. Narrow
4. Narrow
5. Intermediate
6. Intermediate
7. Intermediate
8. Intermediate
9. Wide
10. Wide

6. **Rump Length**

Ref. Point: The distance between beginning (front) of the hip bone and the end (rear) of the pin bone.

1. Short
2. Short
3. Short
4. Short
5. Intermediate
6. Intermediate
7. Intermediate
8. Intermediate
9. Long
10. Long

Section 5 – Conformation Recording

[ICAR Logo]
7. **Muscularity**

Ref. Point: The amount of muscles as seen in the loins and thighs. Not a linear trait.

1. Poor
5. Intermediate
9. Grossly muscular

8. **Rear Legs Set**

Ref. Point: Angle measured at the front of the hock.

1. Straight
5. Intermediate
9. Sickled

If the rear legs set is different, the most extreme one should be scored.
9. **Hock development**

Ref. Point: Cleanness and dryness of the hock.

1. Hock with a lot of fluid
2. Intermediate
3. Complete clean and dry

10. **Foot Angle**

Ref. Point: Angle at the front of the rear hoof measured from the floor to the hairline at the right hoof.

1. Very low angle
2. Intermediate
3. Very steep

If the foot angle is different, the most extreme one should be scored. If the foot angle is difficult to score because of hoof trimming, bedding, manure etc. It is also possible to look at the angle of hairline.
11. Locomotion

Ref. Point: The use of legs and feet, length and direction of the step

1. Severe Abduction – Short Stride
5. Slight Abduction – Medium Stride
9. No Abduction – Long stride

Score only if the cow can walk (cow has no lameness).

12. Fore Udder Attachment

Ref. Point: The strength of attachment of the fore udder to the abdominal wall.

Not a true linear trait.
1. Weak and loose
5. Intermediate
9. Extremely strong and tight
13. **Rear Udder Height**
Ref. Point: The distance between the bottom of the vulva and the milk secreting tissue: in relation to the height of the animal.
1 Low
5 Intermediate
9 High

14. **Central Ligament**
Ref. Point: The depth of cleft at the base of the rear udder.
1 Convex to flat floor (flat), broken ligament
5 Intermediate
9 Deep cleft/strong ligament
15. **Udder Depth**

Ref. Point: The distance from the lowest part of the udder floor to the hock.

1. Deep
2. Intermediate
3. Shallow

Potential point of reference is the level with the hock.

16. **Fore Udder Length**

Ref. Point: The distance between attachment point of udder to abdominal wall to the midpoint between front and rear teat.

1. Short
2. Intermediate
3. Long
17. **Front Teat Placement**
 Ref. Point: The position of the front teat from the centre of quarter as viewed from the rear.
 1. Outside of quarter
 5. Intermediate
 9. Inside of quarter

18. **Teat Length**
 Ref. Point: The length of the front teat.
 1. Short
 5. Intermediate
 9. Long

Instead of scoring front teat, the rear teat can be scored. The choice of front teat or rear teat should be consistent in the whole system.
19. **Teat thickness**

Ref. Point: Thickness of the teat in the middle of the front teat.
- 1 Thin
- 5 Intermediate
- 9 Thick

20. **Rear Teat Placement**

Ref. Point: The position of the rear teat from the centre of quarter:
- 1 Outside of quarter
- 5 Intermediate
- 9 Inside of quarter
21. **Teat Direction**

Ref. Point: The direction of the rear teats viewed from behind.

1. Outside
5. Intermediate
9. Inside
2.5 Genetic evaluation

2.5.1 Type Inspection System – Genetic Evaluation

a. Breeding values for bulls and cows to be based on the classification of cows in the first lactation scored in a herd evaluation system.

b. In a herd evaluation system all first lactating cows, which have not been previously evaluated, must be scored during the visit of the classifier.

c. Additional classifications to obtain a bull proof may only be possible if completed by the same organisation and daughters are sampled randomly with sufficient number of herd mates (contemporaries) scored during the same visit. A minimum of 5 first lactating cows, which qualify for genetic evaluation, are inspected at the same visit.

2.5.2 Evaluation Model

 d. Modern BLUP evaluation techniques should be used to obtain accurate unbiased evaluations.

 e. Data should be corrected for influencing factors such as age, stage of lactation and season by the model. Classifiers should not make adjustments during scoring.

 f. Corrections for variation between classifiers are required to avoid heterogeneity of variance.

 g. Herd mates are defined as the contemporaries of the evaluated heifers in the same lactation, scored during the same visit by the same classifier.

2.5.3 Publication of Information

 a. Publish bull-proofs around an average of 0 and a genetic standard deviation of 1.0.

 b. Proofs of widespread bulls should be published as bar graphs covering the range between +3 and -3 standard deviations.

 c. OR: Mean of 100 & the standard deviation in the base population where this standard deviation is adjusted to the situation the proofs of cows have a reliability of 100%.

 d. The base of sire and cow evaluation should follow the definition of the production proofs, given by Interbull. This includes a stepwise fixed base that should be renewed every five years. The base is defined by cows born 5 years previously.

2.6 Composite traits and General characteristics

2.6.1 Composite Traits

 a. Composite traits are groups of linear traits relating to one specific area.

 b. The individual linear traits are weighted according to economic breeding objectives.

 c. The main composite traits are – Frame, mammary, feet/legs and muscularity.
2.6.2 General Characteristics or Breakdown for Non Linear Traits

a. Type classification programmes also include phenotype assessment. These are described as general characteristics or combined traits, which are not linear in a biological sense. A subjective score is given for the desirability of the cow according to the breeding goal.

b. Female animals are inspected, classified and assigned grades/scores ranging from 50-97 points.

c. The most common scale for mature cows (second or more lactations) are:

- Excellent: 90 - 97 points
- Very Good: 85 - 89
- Good Plus: 80 - 84
- Good: 79 - 75
- Fair/Poor/Insufficient: 50 - 74

d. The awarding of classification grades varies in each country depending upon the breeding goals, and therefore classification scores must be considered in the context of the country of inspection.

e. The final class and score are derived from a breakdown of the main functional areas of the female;

- Frame
- Mammary System.
- Feet & Legs
- Muscularity

f. The weighting of the component breakdown scores should meet the breeding goals in the Country of inspection. It is recommended that for first lactating cows the range of scores used is 70 – 90 points. The average score is always in the middle of the maximum and minimum a first lactating cow can be awarded.
3 Conformation recording of beef cattle

The ICAR multi beef breed conformation recording recommendation describes a set of conformation traits which currently are used in several countries in several breeds. The traits are defined in such a way that they are not breed specific.

This document contains a list of standard traits, which is a list of traits which could be scored by all organisations in the same way to improve further harmonisation on international level.

3.1 Linear Type Traits

Linear type traits are the basis of all modern type classification systems, and are the foundation of all systems for describing the beef cow. Linear classification is based on measurements of individual type traits instead of opinions. It describes the degree of trait not the desirability.

Advantages of linear scoring are:

a. Traits are scored individually.
b. Scores cover a biological range.
c. Variation within traits is identifiable.
d. Degree rather than desirability is recorded.

3.2 Standard Traits

The standard traits satisfy the following conditions:

a. Linear in a biological sense.
b. Single trait.
c. Heritable.
d. Economic value; Direct or indirect with reference to the breeding goal.
e. Possible to measure instead of score.
f. Variation within the population.
g. Each linear trait should describe a unique part of the cow which is not covered by a combination of the other linear traits.

Approved Standard Traits

Frame Traits
1. Body Length
2. Back Length
3. Chest Width
4. Thurl Width
5. Body Depth
6. Chest Depth
7. Flank Depth
8. Length of Rump
9. Height at Withers
10. Height at rump
11. Rounding of ribs
12. Rump Angle
13. Tail Set
14. Width at Hips
15. Width at Pins

Muscularity traits
16. Muscularity Shoulder top view
17. Muscularity Shoulder side view
18. Back Width
19. Thickness of Loin
20. Thigh Rounding side view
21. Thigh Width rear view
22. Thigh Length
23. Body Condition Score

Type traits
24. Muzzle Width
25. Top Line
26. Skin Thickness

Leg traits
27. Front Legs front view
28. Fore Pasterns side view
29. Rear Legs rear view
30. Rear Legs side view
31. Hind Pasterns side view
32. Claw Angle
33. Thickness of Bone

Udder traits
34. Thickness of Teat
35. Teat Length
36. Udder Balance
37. Udder Depth

3.3 Standard trait definition
The precise description of each trait is well defined and it is essential that the full range of linear scores to identify the intermediate and extremes of each trait be used. The assessment parameters for the calculations should be based on the expected
biological extremes of the same category animals in terms of sex and age scored. The scale must cover the biological extremes of the current population or category. The extremes and the intermediates are ordered according to the degree of expression of the trait. For example thin and thick, long and short etc. A high or a low score has no particular meaning and it is not necessarily desirable or undesirable.

Recommended Scale 1 - 9

Note
The linear scale used, must cover the expected biological extremes of the population in the country of assessment.

1. **Body Length**
 Ref. Point: Length from shoulder to pins.
 1 - Short
 5 - Intermediate
 9 - Long
2. **Back Length**

 Ref. Point: Length from shoulder to hips.

 1 - Short
 5 - Intermediate
 9 – Long

3. **Chest Width**

 Ref. Point: Measured from the inside surface between the top of the front legs.

 1 - Narrow
 5 - Intermediate
 9 – Wide
4. **Thurl Width**
Ref. Point: Distance between thurls.
1 - Narrow
5 - Intermediate
9 - Wide

5. **Body Depth**
Ref. Point: Distance between top of back and bottom of barrel at the deepest point: independent of stature.
1 - Shallow
5 - Intermediate
9 – Deep
6. **Chest Depth**

Ref. Point: Distance between top of back just behind shoulder and bottom of barrel behind the front leg.
- 1 - Shallow
- 5 - Intermediate
- 9 - Deep

7. **Flank Depth**

Ref. Point: Distance between top of back just before hips and bottom of barrel just before the rear leg.
- 1 - Shallow
- 5 - Intermediate
- 9 - Deep
8. **Length of Rump**

 Ref. Point: Distance from hips to pins
 1 - Short
 5 - Intermediate
 9 - Long

9. **Height at Withers**

 Ref. Point: Measured from the top of the back in between the shoulders to the ground.
 1 - Short
 5 - Intermediate
 9 - Tall
10. **Height at Rump**

Ref. Point: Measured from the top of the back in between the hips to the ground.
- 1 - Short
- 5 - Intermediate
- 9 - Tall

11. **Rounding of ribs**

Ref. Point: The curving of the ribs.
- 1 - Flat
- 5 - Intermediate
- 9 - Round
12. Rump Angle

Ref. Point: Measured as the angle of the rump structure from hooks (hips) to pins.
1 - High pins
5 - Intermediate
9 - Extreme slope

13. Tail Set

Ref. Point: Insertion of the tail.
1 - Deep
5 - Intermediate
9 – Prominent
14. **Width at Hips**
Ref. Point: Distance between the hips.
1 - Narrow
5 - Intermediate
9 - Wide

15. **Width at Pins**
Ref. Point: Distance between the pins.
1 - Narrow
5 - Intermediate
9 - Wide
16. Muscularity Shoulder top view

Ref. Point: Distance and muscularity between the tops of shoulders, top view.
1 - Narrow
5 - Intermediate
9 - Wide

17. Muscularity Shoulder side view

Ref. Point: Thickness of the muscles of the shoulders.
1 - Thin
5 - Intermediate
9 - Thick
18. Back Width
Ref. Point: Width of the back behind the shoulders.
1 - Narrow
5 - Intermediate
9 - Wide

19. Thickness of Loin
Ref. Point: Thickness of the loins just before the hips and after the last rib, side view on the right.
1 - Thin
5 - Intermediate
9 - Thick
20. **Thigh Rounding side view**

Ref. Point: Curving of the tight behind the vertical line between pins and hock, side view.

- 1 - Flat
- 5 - Intermediate
- 9 - Round

21. **Thigh Width rear view**

Ref. Point: Width of the thighs, rear view, halfway. Represents the outside curving of the tights.

- 1 - Narrow
- 5 - Intermediate
- 9 - Wide
22. **Thigh Length**

Ref. Point: Length of the thigh between pins and thigh attachment to the leg.
1 - Short
5 - Intermediate
9 - Long

23. **Body Condition Score**

Ref. Point: The covering of fat over the tail head and rump. Not a true linear trait.
1 - Poor
5 - Intermediate
9 - Grossly fat
24. **Muzzle Width**
Ref. Point: Width of the muzzle.
1 - Narrow
5 - Intermediate
9 - Wide

25. **Top Line**
Ref. Point: Curving of the back between shoulders and hips
1 - Weak (concave)
5 - Intermediate
9 - Strong (convex)
26. **Skin Thickness**

 Ref. Point: Thickness of skin.
 1 - Thin
 5 - Intermediate
 9 - Thick

27. **Front Legs front view**

 Ref. Point: Direction of the feet of the forelegs viewed from the front.
 1 - Toes in
 5 - Intermediate
 9 - Toes out
28. **Fore Pasterns side view**

Ref. Point: Angle of the pasterns of fore legs with the floor.

1 - Low
5 - Intermediate
9 - Steep

![Diagram of fore pasterns with different angles: Low, Intermediate, Steep.](image)

29. **Rear Legs rear view**

Ref. Point: Direction of the feet of the rear legs, viewed from the rear.

1 - Toes in
5 - Intermediate
9 - Toes out

![Diagram of rear legs with different toe directions: Toes in, Intermediate, Toes out.](image)
30. Rear Legs side view

Ref. Point: Angle measured at the front of the hock

- 1 - Straight
- 5 - Intermediate
- 9 - Sickled

31. Hind Pasterns side view

Ref. Point: Angle of the pasterns of the rear legs with the floor

- 1 - Low
- 5 - Intermediate
- 9 - Steep
32. **Claw Angle**
Ref. Point: Angle at the front of the rear hoof measured from the floor to the hairline.
1 - Low
5 - Intermediate
9 - Steep

33. **Thickness of Bone**
Ref. Point: Thickness of the cannon bone the forelegs
1 - Thin
5 - Intermediate
9 - Thick
34. **Thickness of teat**
Ref. Point: Thickness of the teat in the middle of the front teat.
1 - Thin
5 - Intermediate
9 - Thick

35. **Teat Length**
Ref. Point: The length of the front teat
1 - Short
5 - Intermediate
9 - Long
36. **Udder Balance**

Ref. Point: The balance of the udder floor between front and rear udder

1 - Front quarter higher than rear quarter
5 - Intermediate
9 - Front quarter lower than rear quarter

37. **Udder Depth**

Ref. Point: The distance from the top of the udder to the lowest part of the udder floor, side view

1 - Deep
5 - Intermediate
9 - Shallow
3.4 Composite traits and general characteristics

3.4.1 Composite traits

a. Composite traits are groups of linear traits relating to one specific area.

b. The individual linear traits are weighted according to economic breeding objectives.

c. The main composite traits are - Muscularity, type (breed standard), feet/legs, development and final score.

3.4.2 General characteristics

a. Type classification programmes also include phenotype assessment. These are described as general characteristics or combined traits, which are not linear in a biological sense. A subjective score is given for the desirability of the animal according to the breeding goal.

b. Animals are inspected, classified and assigned grades/scores ranging from 60-99 points.

c. The most common scale is:

 d. Excellent 90 - 99 - points or ++

 Very Good 85 – 89 " or +

 Good Plus 80 - 84 " or =

 Good 79 - 75 " or -

 Fair/Poor/Insufficient 60 - 74 " or –

 e. The awarding of classification grades varies in each country depending upon the breeding goals, and therefore classification scores must be considered in the context of a breed in the country of inspection.

f. The final class and score are derived from a breakdown of the main functional areas of the animal:

 - Muscularity.

 - Type (breed standard).

 - Legs/Feet.

 - Development.

 g. For the quality of data it is important to score the traits for categories of similar age or sex. For example:

 - Calves at weaning (5-10 months).

 - Heifers: 6 months before calving.

 - Cows: between first and second calving.

h. The weighting of the component breakdown scores should meet the breeding goals in the breed and country of inspection. It is recommended that for animals the range of scores used is 60 - 99 points. The average score is always in the middle of the maximum score and the minimum score the group (for example population within a country) can be awarded. In the case of the range 60 - 99, the population average should be close to 80.
4 Conformation recording of dairy goats

The ICAR multi dairy goat breed conformation recording recommendation describes a set of conformation traits which currently are used in several countries in several breeds. The traits are defined in such a way that they are not breed specific.

This document contains a list of standard traits, which is a list of traits which could be scored by all organisations in the same way to improve further harmonisation on international level.

4.1 Linear Type Traits

Linear type traits are the basis of all modern type classification systems, and are the foundation of all systems for describing the dairy goat. Linear classification is based on measurements of individual type traits instead of opinions. It describes the degree of trait not the desirability.

Advantages of linear scoring are:

a. Traits are scored individually.
b. Scores cover a biological range.
c. Variation within traits is identifiable.
d. Degree rather than desirability is recorded.

4.2 Standard Traits

The standard traits satisfy the following conditions:

a. Linear in a biological sense.
b. Single Trait.
c. Heritable.
d. Economic value; Direct or indirect with reference to the breeding goal.
e. Possible to measure instead of score.
f. Variation within the population.
g. Each linear trait should describe a unique part of the goat which is not covered by a combination of the other linear traits.

Approved Standard Traits

Frame Traits

1. Stature
2. Chest Width
3. Body Depth
4. Thurl Width
5. Rump Angle
6. Loin Strength
7. Angularity
Leg traits

8. Rear Legs rear view
9. Rear Legs side view
10. Locomotion

Udder traits

11. Fore Udder Attachment
12. Rear Udder Height
13. Central Ligament
14. Rear Udder Width
15. Udder Depth
16. Teat Placement rear view
17. Teat Placement side view
18. Teat Length
19. Teat Form

4.3 Standard Trait Definition

The precise description of each trait is well defined and it is essential that the full range of linear scores to identify the intermediate and extremes of each trait be used. The assessment parameters for the calculations should be based on the expected biological extremes of the same category animals in terms of sex and age scored. The scale must cover the biological extremes of the current population or category. The extremes and the intermediates are ordered according to the degree of expression of the trait. For example thin and thick, long and short etc. A high or a low score has no particular meaning and it is not necessarily desirable or undesirable.

Recommended Scale 1 - 9

Note

The linear scale used, must cover the expected biological extremes of the population in the country of assessment.
1. **Stature**

 Ref. Point: Measured from the top of the spine in between the shoulders to ground. Precise measurement in centimeters or inches, or linear scale.
 1 - Short
 5 - Intermediate
 9 - Tall

2. **Chest Width**

 Ref. Point: Measured from the inside surface between the top of the front legs.
 1 - Narrow
 5 - Intermediate
 9 - Wide
3. **Body Depth**
Ref. Point: Distance between top of spine and bottom of barrel at last rib – the deepest point.
1 - Shallow
5 - Intermediate
9 - Deep

4. **Thurl Width**
Ref. Point: Distance between thurls.
1 - Narrow
5 - Intermediate
9 - Wide
5. **Rump Angle**
Ref. Point: Measured as the angle of the rump structure from hooks (hips) to pins.
1 - Less slope
5 - Intermediate
9 - Extreme slope

6. **Loin Strength**
Ref. Point: Strength of vertebrae between back and rump.
1 - Weak
5 - Intermediate
9 - Strong
7. **Angularity**

Ref. Point: The spring of the ribs.
1 - Small angle
5 - Intermediate
9 - Large angle

8. **Rear Legs Set rear view**

Ref. Point: Distance between the hocks.
1 - Small (x-legs)
5 - Intermediate
9 - Large (o-legs)
9. **Rear Legs Set side view**

 Ref. Point: Angle measured at the front of the hock.

 1 - Straight
 5 - Intermediate
 9 - Sickled

![Diagram of rear leg positions](image)

1. Straight
5. Intermediate
9. Sickled

10. **Locomotion**

 Ref. Point: The use of legs and feet, length and direction of the step.

 1 - Severe abduction – short stride
 5 - Slight abduction – medium stride
 9 - No abduction – long stride

![Diagram of locomotion](image)

1. Short stride
5. Intermediate
9. Long stride
11. **Fore Udder Attachment**

 Ref. Point: The strength of attachment of the fore udder to the abdominal wall.
 Not a true linear trait.
 1 - Weak and loose
 5 - Intermediate
 9 - Extremely strong and tight

12. **Rear Udder Height**

 Ref. Point: The distance between the bottom of the vulva and the milk secreting tissue.
 1 - Low
 5 - Intermediate
 9 - High
13. **Central Ligament**

Ref. Point: The depth of cleft at the base of the rear udder.

1 - Convex to flat floor (flat), broken ligament
5 - Intermediate
9 - Deep cleft/strong ligament

14. **Rear udder width**

Ref. Point: Width of the udder at the point where the milk secretion tissue is attached to the body.

1 - Narrow
5 - Intermediate
9 - Wide
15. **Udder Depth**

Ref. Point: The distance from the lowest part of the udder floor to the hock.

- 1 - Deep
- 5 - Intermediate
- 9 - Shallow

Potential point of reference is the level with the hock

![Diagram showing udder depth categories](image-url)

16. **Teat Placement rear view**

Ref. Point: The direction of the teats in relation to the udder viewed from rear.

- 1 - Outside
- 5 - Intermediate
- 9 - Downwards

![Diagram showing teat placement categories](image-url)

17. **Teat Placement side view**

Ref. Point: The position of teat in udder viewed from the side.
- 1 - In front
- 5 - Intermediate
- 9 - At bottom

18. **Teat Length**

Ref. Point: The length of the teat
- 1 - Short
- 5 - Intermediate
- 9 - Long
19. **Teat Form**

Ref. Point: The shape of the teat, from triangle to finger form, viewed from rear or from side
- 1 - Triangle shape - Wide
- 5 - Intermediate
- 9 - Finger shape - Narrow

4.4 Composite traits and general characteristics

4.4.1 Composite Traits

i. Composite traits are groups of linear traits relating to one specific area.

j. The individual linear traits are weighted according to economic breeding objectives.

k. The main composite traits are - Frame, Udder, Feet/Legs and Final Score.

4.4.2 General characteristics

l. Type classification programmes also include phenotype assessment. These are described as general characteristics or combined traits, which are not linear in a biological sense. A subjective score is given for the desirability of the animal according to the breeding goal.

m. Animals are inspected, classified and assigned grades/scores ranging from 1-9 points.

n. The most common scale for is:

<table>
<thead>
<tr>
<th>Category</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excellent</td>
<td>9</td>
</tr>
<tr>
<td>Very Good</td>
<td>7–8</td>
</tr>
<tr>
<td>Good Plus</td>
<td>4–6</td>
</tr>
<tr>
<td>Good</td>
<td>2–3</td>
</tr>
<tr>
<td>Fair/Poor/Insufficient</td>
<td>1</td>
</tr>
</tbody>
</table>
o. The awarding of classification grades varies in each country depending upon the breeding goals, and therefore classification scores must be considered in the context of a breed in the country of inspection.

p. The final class and score are derived from a breakdown of the main functional areas of the animal;
 - Frame
 - Udder
 - Legs/Feet

q. For the quality of data it is important to score the traits for categories of similar age or sex.

r. The weighting of the component breakdown scores should meet the breeding goals in the breed and country of inspection. It is recommended that for animals the range of scores used is 1 - 9 points. The average score is always in the middle of the maximum score and the minimum score the group (for example population within a country) can be awarded. In the case of the range 1 - 9, the population average should be close to 5.
5 Improving data quality and monitoring classifiers

5.1 Introduction
When collecting data on animal performances on a routine basis it is important to do this in a consistent and transparent way. In this way quality of data can be guaranteed and for everybody it is clear how it is done. This is also important for scoring animals for conformation traits, which is normally done by classifiers, specially trained doing this job.

This chapter describes the improvement of quality and transparency of data collection for conformation traits.

5.2 Practical aspects on type classification system

s. One organisation should be in charge of classifications within each evaluating system.

t. There should be a head-classifier in charge of training and supervising other classifiers within the evaluating system to achieve and maintain a uniform level of classification. Additionally the exchange of information between head-classifiers from different systems/countries is recommended.

u. Individual full time professionals should complete classification. Classifiers should be independent of commercial interest in AI-bulls/studs.

v. Classifiers must record the trait as observed without adjustment e.g. Age, stage of lactation, sire or management system.

w. The working information provided for the classifier should make no reference to the pedigree or performance of the animal.

x. Classifiers should always rotate classification areas (herds and regions) to ensure a good data connection between regions and to minimise the sequential scoring of animals by the same classifier. This way of working reduces this risk of classifier times regional genetics interaction or classifier times herd interaction.

y. An advisory group can be installed with expertise in the field of conformation classification, statistics, breeding, training people, in order to monitor and advise on the improvement to the classification system.

z. All factors accounting for any non-genetic variance should be recorded when a herd is visited, e.g. classifier's identification, date/time of scoring, management group, housing system, flooring, nutritional status. This makes it possible to find possible interactions between the environmental factors and the trait scored.

Types of housing can be free stall, tie stall, mixture (stall plus outside).
Types of floors can be concrete, cement with groves, slats, sand, rubber, straw, pasture.

5.3 Training and monitoring of classifiers
The monitoring and performance evaluation of classifiers is an important part of the standardisation of the ICAR international type program.
Objectives

Improve accuracy of data collection, within country all classifiers should:

1. Apply the same trait definition.
2. Apply the same mean.
3. Apply the same spread of scores.

Tools for objective 1:

a. National group training sessions.
b. Statistical monitoring of individual classifiers performance with reference to mean, spread and normal distribution of scores.
c. Compute the correlation between the scores of one classifier and the group by using bivariate analysis. This shows the quality of harmonisation of trait definition between classifiers.
d. Improve the genetic correlation for linear traits between countries (Interbull evaluation)
e. Apply the same trait definition in all countries.

Tools for objective 2:

a. International training of head classifiers.
b. International group training sessions.
c. Audit system.

If a country decides to change the definition of a trait, it is recommended not to use previous scores or use only as a correlated trait in the national genetic evaluation system.

5.3.1 National group training sessions

One way of improving harmonisation of scoring by classifiers is having regular training sessions with a group of classifiers.

There are many ways to accomplish trait harmonisation through training sessions. Normally a training session consists of scoring a group of animals and the scores of individual classifier are compared with the scores of the other classifiers and/or head classifier.

Attention points are:

a. Use a group of animals for training session which is representative for the population classifiers have to score during their herd visits.
b. Deviations of individual scores are discussed and it is made clear which is the correct score for a certain trait on an animal.
c. Scores of each classifier are analysed per trait using some analysis tools:
 - Compute the mean and standard deviation of the deviations of the scores on animals per trait, per classifier. The deviation is the difference between the score and the average group score for a trait, for an animal. This gives insight in the scoring of individual classifier: always above or below the mean, more
variation in scoring a trait than the group/head classifier. (with a test it can be shown if the differences found are significant).

- Compute the spread of the deviation of scores given by classifier per trait. This gives insight in how consistent a classifier is scoring a trait. (with a test it can be shown if the differences found are significant).

d. Instead of scoring a group of animals once, the animals can be scored twice by the classifiers, for example in the morning and in the afternoon. Based on these scores (approximately 20) the repeatability per classifier per trait can be computed.

5.3.2 Statistical monitoring of individual classifiers

The scores of a classifier from a certain period in time can be analysed. A period can be 12 or 6 months, for example.

From these scores the mean and standard deviation can be computed. The mean should be close to \(\frac{\text{maxscore} - \text{minscore}}{2} \), and the standard deviation should be near \(\frac{\text{maxscore} - \text{minscore} + 1}{6} \), where minscore is the lowest score on the scale and maxscore is the highest score on the scale. For example: scoring a trait on a scale of 1-9, a mean is expected of 5 and a standard deviation of 1.5.

Another option is to compute the correlation between the scores of one classifier and the scores of rest of the group by using bivariate genetic analysis. This shows the quality of harmonisation of trait definition between classifiers (Veerkamp, R. F., C. L. M. Gerritsen, E. P. C. Koenen, A. Hamoen and G. de Jong. 2002. Evaluation of classifiers that score linear type traits and body condition score using common sires. JDS 85:976-983).

For this analysis, two data sets are created, one with scores of one classifier and the other with scores of all other classifiers from a certain period, for example 12 months. Both data sets can be analysed in a bivariate analysis, estimating different (genetic) parameters. The analysis can be carried out for each trait and for each classifier. From the bivariate analyses the following parameters can be derived:

a. Heritability: the heritability estimated within each classifier can be used as criteria for the repeatability of scores within classifiers, albeit the optimum value is not unity but depends on the true heritability of each trait.

b. Genetic correlation: the genetic correlation between two data sets can be used as a measure of the repeatability between classifiers, where a genetic correlation of one between classifiers is expected.

c. Genetic standard deviation.

d. Phenotypic standard deviation (= square root of genetic variance and error variance).

For the evaluation of each trait for each classifier the diagram in Figure 5.1 can be used.

Evaluation obviously starts with the mean score for each classifier, i.e., the mean should be close to the trait standard (5 for linear traits and 80 for descriptive traits). Secondly, the genetic standard deviation should not be lower than the average.
If the genetic standard deviation is lower, this could be due to the scale used (measured by the phenotypic standard deviation), due to poor within classifier repeatability (a low heritability) or both. If the low genetic standard deviation goes together with a low phenotypic spread, the advice is the classifier should used the scale in a better way, use more the extreme scores. If the genetic spread goes together with a low heritability, then the classifier should score the trait more consistently, apply the same definition.

If the genetic correlation is too low the classifier is likely to score a trait different than other classifiers.

All the parameters from the system can be tested using the standard error on the parameters estimated. Every classifier can be tested against the average of the parameters of all classifiers for a certain trait. A classifier with a few scores may deviate a bit more from the average of the group, therefore taking the standard error into account in a statistical test is more fair.

Figure 5.1. Scheme for evaluation trait by classifier using genetic parameters.
5.4 Auditing a classification system

The Classification system applied can be further improved by using an audit system where experts familiar with the conformation classification in other countries or organisations, examine the situation in your organisation or country.

An important issue is that information is exchanged between people responsible for the classification system.

Different options to audit are:

a. By using international workshops, in which information can be informally exchanged regarding how classifiers are trained and conduct their daily work

b. By inviting classifiers and/or a head classifier from another country or organisation to participate in or lead group training sessions

c. By having a group of experts visit an organisation responsible for classification, conduct a survey on methods and procedures, report their findings and makes suggestions for improvements.
6 Recommendation on scoring conformation defects in cattle

6.1 Introduction
In many conformation systems for cattle defects are scored when scoring animals for linear traits and general characteristics. Most of the time defects are used to determine the score for general characteristics.

This chapter describes characteristics of defects for dairy, dual purpose and beef cattle and contains a list of proposed defects which could be used. They are considered to be important for one of the breed types (dairy, dual purpose and/or beef) and could be considered by countries or organizations, that do not score them up to now. If a country or organization has already a list of defects, they could consider to reduce the list according to the ICAR list.

6.2 Description of defect
Defects are not there to describe the whole variation in the population, but only a problematic trait (e.g. side leak) or a trait with a high enough frequency in the population.

The number of defects scored should be kept as low as possible as more defects means also more labor.

The easiest way to score conformation defects in a digital system is when a cow is scored for a group of the linear traits (frame, dairy strength, mammary system, legs/feet), the classifier is requested by the system if there are any defects within this particular group.

A conformation defect could be scored when it has the following characteristics:
 a. heritable
 b. not rare
 c. is problematic for functionality
 d. is clearly described and visible
 e. should be scored as 0/1/2 (as soon as there is more variation and the frequency in population is considerable, one could/should consider to score this trait as a linear trait (scale 1-9)
 f. is used to come up with a score for a general characteristic

Defects have no value to be scored when it is not used in determining general characteristics or when it is not used in a genetic evaluation.

The advantages of scoring defects are:
 a. get overview what the status of a specific defect is in the population
 b. could be used for determining the score for general characteristics
 c. could be used to present figures per bull

Disadvantage of scoring defects:
 a. difficult to harmonize classifiers as definitions are not always clear and for training sessions it is very hard to find a group of cows representing all defects.
Defects can be scored with 0 (not present), 1 (slightly present) or 2 (pronounced defect). More practical is that classifier score defects only when they are present, 1 (slightly present) or 2 (pronounced defect).

6.3 Approved standard defects

The list with approved conformation defects is chosen such that they satisfy the characteristics mentioned in 6.2.

Per defect a definition is given in Table 1 and it is indicated in which type of breed the defect can have added value.

Table 1. List of defects in cattle.

<table>
<thead>
<tr>
<th>Defect</th>
<th>Definition</th>
<th>Used in type of breed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open shoulder</td>
<td>A significant gap between the tip of the shoulder and the side of the body</td>
<td>X</td>
</tr>
<tr>
<td>Weak crops</td>
<td>The part of the animal behind the shoulder (just below the chine) is a lot narrower than the shoulder</td>
<td>X</td>
</tr>
<tr>
<td>High tail</td>
<td>Evaluated by considering the tailhead in relation to the pins viewed from the rear. It could be considered as a defect when tailhead is at least 9 cm over the pins.</td>
<td>X</td>
</tr>
<tr>
<td>Advanced anus</td>
<td>Anus is ahead of pin bone. Tendency for the anus and vagina to be pulled forward.</td>
<td>X</td>
</tr>
<tr>
<td>Toes out front</td>
<td>Animal walks with a slight amount of toeing out. Maybe due to a twisting knee or to a lack of heart.</td>
<td>X</td>
</tr>
<tr>
<td>Crampy</td>
<td>Unnatural or irregular contraction of muscles of the rear legs.</td>
<td>X</td>
</tr>
<tr>
<td>Thurls too far back</td>
<td>Ratio of distance of thurl position to rump bone and thurl position to pin bone ratio is larger than 4:1 (80%-20%)</td>
<td>X</td>
</tr>
<tr>
<td>Blind quarter</td>
<td>Quarter never given milk.</td>
<td>X</td>
</tr>
<tr>
<td>Webbed teats</td>
<td>An extra teat is attached to functional teat.</td>
<td>X</td>
</tr>
<tr>
<td>Side leak</td>
<td>Little functional hole on the side of the teat.</td>
<td>X</td>
</tr>
<tr>
<td>Extra functional teats</td>
<td>Extra teats which produce milk.</td>
<td>X</td>
</tr>
</tbody>
</table>