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Ruminant digestion emits methane, a potent greenhouse gas contributing to global 
warming and reducing feed efficiency. Reducing enteric methane emissions (EME) via 
farming and breeding decisions is crucial, yet measuring these emissions on commercial 
farms is currently challenging and costly. It is common for EME to be measured using 
distinct technologies. However, different EME traits sometimes show weak correlations 
between countries, feeding systems or technologies, complicating the combination of 
reference populations. Here we show a methodology to predict and reduce EME with 
the use of the rumen microbiome. We identified a common core of 1,032 KEGG ontology 
identifiers (KO) from the rumen metagenome of 410 dairy cows located in Australia 
and 434 in Spain. This core explained 83% and 57% of EME (measured using SF6 in 
Australia and sniffers in Spain) with an accuracy of 0.38 and 0.19 respectively. This 
result suggest that the ruminal metagenome can be used to predict EME and make 
farming decisions to reduce these meissions. We also estimated reductions in EME 
of up to ~16% of the population mean per generation by selection on this core, being 
superior to direct selection on EME (~9 to 14%). A combination of direct selection 
on EME and indirect selection on the core would produce larger reductions (up to 
19%). These results suggest that rumen metagenome features could be candidate 
for improvement with genomic selection in combination with EME traits. Combining 
reference populations through the ruminal metagenome can be used to predict EME 
irrespective of each population’s EME trait. We propose a global effort to validate a 
common core of ruminal features associated with EME. If validated, our results could 
impact global ruminant emission reduction efforts.

Keywords: rumen microorganisms, metagenomics, methane production, phenotypic 
variation, genomic selection.  
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Ruminants have evolved in symbiosis with their rumen microbiota for over 50 million 
years, and for this reason can transform plant materials that humans cannot digest into 
vital nutrients and energy. This capability depends on a diverse microbial community 
that, unfortunately, produces methane—a potent greenhouse gas (GHG) that 
contributes to approximately 40% of global methane emissions (Moss et al., 2000) and 
makes up 40% of total GHG emissions from livestock (FAO, 2023). In addition, enteric 
methane emissions (EME) represent 2 to 12% of the energy loss in the ruminants’ diet 
(González-Recio et al., 2023; Lassen and Difford, 2020). 

Reducing enteric methane emissions (EME) through farm-management and breeding 
decisions is ideal. However, EME need to be measured for this purpose and recording 
these emissions in commercial farms is currently logistically challenging and expensive. 
Additionally, different EME traits are sometimes weakly correlated, complicating the 
combination of reference populations (Hristov et al., 2016). However, all EME traits have 
the same underlying biology – methane is mainly produced by the rumen microbiota 
(González-Recio et al., 2023).

The role of the host genetics and the rumen microbiome on EME remains unclear. The 
host genetics partially determines both EME (López-Paredes et al., 2020; Richardson et 
al., 2021) and ruminal microbial features associated with EME (Martínez-Álvaro et al., 
2022; Saborío-Montero et al., 2021). For this reason, and according to the definitions 
of Pérez-Enciso et al. (2021), there could be two potential biological scenarios. Firstly, 
there is an indirect relationship where the host genome affects EME, but this is mediated 
by the microbiota. In the second scenario, a recursive model, both the host genetics 
and the microbiota exert influence on EME, and the host genetics also indirectly affects 
EME by modulating the microbiota (Saborío‐Montero et al., 2020).

In the last decade one of the most widely employed approaches  to study the effect 
of the rumen microbiome on EME is estimating the variance in EME explained by a 
microbial relationship matrix (MRM) (Ross and Hayes, 2022). Additionally, recent 
studies have estimated reductions in EME by implementing breeding programs selecting 
on ruminal microbial features, which are heritable and genetically correlated with EME 
(Martínez-Álvaro et al., 2022). 

This study aimed to generate a methodology to: First, quantify the effects of an MRM 
constructed using a novel methodology on EME in two distinct dairy cattle populations 
of more than 400 animal each, one in Australia and one in Spain. Second, to estimate 
the response to selection on EME by indirectly selecting on ruminal metagenomic 
features. Third, to investigate whether these two dairy cattle populations with distinct 
EME traits could be connected through the rumen metagenome.

The Australian experiments in this study were approved and undertaken in accordance 
with the Australian Code of Practice for the Care and Use of Animals for Scientific 
Purposes (NHMRC, 2013). Approval to proceed was granted by the Agricultural 
Research and Extension Animal Ethics Committee of the Department of Energy, 
Environment and Climate Action (application number 2013-14 was approved on August 
22nd, 2013, and application number 2016-12 was approved on August 22nd, 2016). The 
Spanish experiments in this study were conducted in accordance with Spanish Royal 
Decree 53/2013 for the protection of animals used for experimental and other scientific 
purposes and were approved by the Basque Institute for Agricultural Research and 
Development Ethics Committee (Neiker-OEBA-2017-004) on March 28, 2017.

Introduction
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The Australian population included 410 Holstein lactating cows located at the Agriculture 
Victoria’s Ellinbank SmartFarm (Ellinbank, Victoria, Australia). These cows were 
measured for dry matter intake (DMI) and grams per day methane production (MeP) 
in 11 cohorts between 2013 and 2017. MeP was considered the EME trait in Australia. 
At the beginning of the study, cows averaged 110 ± 19.4 (mean ± standard deviation) 
days in milk, 2.5 ± 1.25 lactations, and weighed 539 ± 69.8 kg. Over a 32-day period 
in an experimental facility, they had continuous access to feed, water, and a bare 
paddock (loafing area) for rest. The cows were outside except for twice-daily milking. 
Cows were fed with the diet described by Moate et al. (2021) and DMI was measured 
using feed bins equipped with load cells and electronic monitoring linked to individual 
cow identification (Gallagher Animal Management Systems, Hamilton, New Zealand 
Daily DMI was recorded over the 32 days. Daily MeP was obtained with the sulphur 
hexafluoride (SF6) tracer method described by Deighton et al. (2014). Further details 
of the environment of the Australian dairy cattle population are provided by Moate et 
al. (2021). 

The Spanish population included 432 Holstein cows, either in their first or second 
lactation, from 14 commercial farms across four Northern Spanish regions (Cantabria, 
País Vasco, Navarra, and Gerona). Following the methodology of Rey et al. (2019), 
EME were measured using a non-dispersive infrared methane detector (The Guardian® 
NG) from Edinburgh Sensors (Livingston, Scotland, UK), also termed “sniffer”, installed 
in the feed bin of an automatic milking system. Individual methane concentration (MeC) 
in Spain as parts per million (ppm) was recorded for each cow during milking over a 
period of two to three weeks. The recorded eructation peaks were averaged to obtain 
a single record per cow. The Spanish population was under commercial milk recording 
schemes consistent with ICAR accredited recording protocols. 

Cows located in Australia were genotyped with SNP arrays including custom 
genotyping-by-sequencing (GBS) and selected SNP (XT) panels (approximately 
8,800  SNP of which at least 6,900 overlapped with the BovineSNP50 BeadChip, 
Illumina, San Diego, California, USA) and imputed to the Bovine 50K SNP chip panel 
using FImpute (Sargolzaei et al., 2014) as described by Haile-Mariam et al. (2020). 
Cows located in Spain were genotyped with the EURO12K SNP chip (Illumina, San 
Diego, California, USA) and imputed to 54,609 SNPs using BEAGLE (Browning et 
al., 2018) as described in Jiménez-Montero et al. (2013) and the Spanish reference 
population provided by the Spanish Holstein Association (CONAFE, Madrid, Spain) 
containing more than 200,000 genotypes. A panel with 39,058 (40K) SNP shared by 
both populations and with a minor allele frequency greater than 0.05 was selected 
for analyses. 

Ruminal fluid samples from all animals were collected via an oesophageal probe 
placed into the rumen via the mouth. In Australia a probe similar to the one described 
by Geishauser (2019), and a vacuum pump were used to collect samples (Moate et al., 
2014). In Spain, samples were obtained as described by Saborío-Montero et al. (2021). 
Following collection, ruminal fluid samples were frozen using liquid nitrogen vapours. 
Microbial genomic DNA was extracted from the ruminal fluid using a ZymoBIOMICS 
DNA miniprep kit (Zymo Research, Irvine, California, USA) in Australia, and with 
DNeasy Power Soil Kit (QIAGEN, Valencia, California, USA) in Spain. After DNA 
concentration and purity assurance, long-read sequencing with Oxford Nanopore 
Technologies (ONT) and R9.4.1 flow cells was used for metagenome sequencing 
(Oxford Nanopore Technologies, Oxford, United Kingdom). 

Data

Ruminal metagenome 
processing
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Basecalling was conducted using Guppy (Oxford Nanopore Technologies, Oxford, 
United Kingdom) with high accuracy mode (HAC) with the versions 5.0.16 and 4.2.2 in 
Australia and Spain, respectively. Reads with a quality score greater than 7 and 
sequence length greater than 150 base pairs were retained for analysis. The long reads 
were aligned to the KEGG database (Kanehisa and Goto, 2000) for KEGG ontology 
identifiers (KO) identification using the script SQM_longreads.pl of SqueezeMeta pipeline 
(version 1.4) (Tamames and Puente-Sánchez, 2019). 

KOs not present in all animals or that included genes of Bos taurus (cow) were removed, 
retaining 1,032 KOs for downstream analysis. These KOs were used to construct two 
absolute abundance matrices, one per population, with dimensions animals ×KOs and 
populated with the number of reads assigned to each KO in each animal. Subsequently, 
a relative abundance (RA) matrix was created from each population as the proportion 
of each variable’s absolute abundance compared to the total abundances in the same 
animal.  These RA matrices were CLR-transformed to account for their compositional 
nature (Gloor et al., 2017) using the unweighted option of the CLR function of the 
easyCODA R package (Greenacre, 2018).

A genomic relationship matrix (GRM) was created with genotypes of the SNP markers 
shared by both populations, utilising the Gmatrix function from the R package AGHmatrix 
(Amadeu et al., 2016) following the approach of Yang et al. (2010). Additionally, a 
MRM was constructed as:

M = (1/p)XXT						      (1)

Where M is the MRM, p is the number of KOs and X is the CLR-transformed matrix. A 
small constant value (1 x 10-8) was added to the elements on the main diagonal of the 
MRM matrices to prevent singularity issues. Finally, the GRM and MRM were inverted 
with the function solve of R (R Core Team, 2022). We avoided the step of scaling 
and centring the KOs across animals as is widely used (Hess et al., 2023; Ross and 
Hayes, 2022; Ross et al., 2012) as this step decreases large effects of KOs on EME 
(López‑García et al., 2022; Martínez-Álvaro et al., 2022; Roehe et al., 2016).

The variance in EME explained by the rumen microbiome was estimated with a 
microbiome BLUP (MBLUP) (Saborío-Montero et al., 2021) as:

y = 1’µ + Xβ + Uh + Wm + e				    (2)

Where m is the EME population mean; 1 is a vector of ones with the same length of 
g ; b is a vector of fixed effects; u is a vector of random additive genetic effects; and 
m is a vector of random microbiota effects. X and W are incidence matrices. The 
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distribution of m is assumed N(0, MRMsm2); and e is a vector of random residuals 
distributed N(0,se2). EME of each country was included as the dependent variable 
(y) in this model. The fixed effects in Australia were cohort (11 levels), DMI, days in 
milk, energy corrected milk obtained with the methodology of Visscher et al. (1994), 
and daily body weight change during the experiment. In Spain, the fixed effects were 
lactation number (2 levels) and stage of lactation (3 levels). In Spain, the robots used 
to measure emissions nested within farms (24 levels) was used as a random effect and 
is represented by the effect h and the incidence matrix U. The models were conducted 
with the function asreml of the R package ASReml-R (version 3) (Butler et al., 2009). 
The proportion of EME variance explained by the rumen microbiome, microbiability 
(m2), was estimated as follow, where sp2 is the phenotypic variance on EME:

m2=(σm
2)/(σp

2 )						      (3)

The accuracy of prediction was estimated with a 10 repetition, 5-fold cross-validation, 
where the phenotypes of the validation group were removed and the prediction 
was developed with the phenotypes from the remaining four groups and the rumen 
microbiome KOs of all animals. The prediction accuracy was calculated as the 
correlation between the random coefficient regressors from the MRM of the validation 
group and their EME. Then, the mean and standard deviation of the accuracies across 
the groups were calculated. This process was repeated 10 times, and the mean and 
standard deviations were averaged between repetitions to obtain the final accuracy 
mean and standard deviation.

Univariate genomic BLUP (GBLUP) were conducted to EME and each KO as the 
response variable in:

y = 1’µ + Xβ + Uh + Zg + e				    (4)

 
Where, g is a vector of random additive genetic effects with an assumed distribution N(0, 
GRMg

2) and Z is an incidence matrix. The rest of Equation 4 are the same previously 
described for Equation 2.

The heritability (h2) of the KOs was estimated as:

h2=(σg
2)/(σp

2 )						      (5)

The phenotypic correlation between KOs and EME was calculated as the Pearson 
correlation between them and the genetic correlations as the correlations between the 
genomic estimated breeding values obtained with Equation (4).

Phenotypic and 
genetic parameters
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We calculated three different scenarios to select against EME: (1) by directly selecting 
against EME only, (2) by indirectly selecting on the ruminal KOs only, and (3) by using 
a combination of scenarios (1) and (2), selecting on both EME and the KOs. The KOs 
used as indicative traits of MeP in Australia were 87 KOs in the core that had a heritability 
≥ 0.20 in Australia and a genetic correlation with EME in Australia ≥ 0.20  (core 
breeding Australia). Similarly, the KOs used as indicative traits of MeC in Spain were 
159 KOs in the core that had a heritability ≥ 0.20 in Spain and a genetic correlation 
with EME in Spain ≥ 0.20 (core breeding Spain). Additionally, we also used 15 KOs 
reported by Martínez-Álvaro et al. (2022) as associated with EME in beef cattle that 
were present in our core. We calculated the response to selection in all scenarios with a 
selection index approach (Cameron, 1997) incorporating the estimated heritability, and 
genetic and phenotypic correlations previously described using an in-house R script 
(R Core Team, 2022). Further, we calculated the response to selection when 30% to 
1% of the population with lowest methane emissions were selected.

The MRM explained 83 ± 7% of the variance in EME in Australia and 57 ± 20 % in 
Spain, with prediction accuracies of 0.37 ± 0.08 and 0.19 ± 0.11, respectively. The 
heritability of EME was 0.28 ± 0.12 and 0.11 ± 0.10 in Australia and Spain, respectively. 
The maximum KOs’ heritability was 0.56 in Australia and 0.47 in Spain, the genetic 
correlations between EME and KOs were up to |0.54| in Australia and |0.43| in 
Spain (Figure 1), and phenotypic correlations up to |0.49| and |0.22| in Australia and 
Spain. These results agree with that reported by (Martínez-Álvaro et al., 2022). The 
core breeding Australia had a heritability of 0.27 ± 0.06 and a genetic correlation of 
0.30 ± 0.07. The core breeding Spain had a heritability of 0.28 ± 0.07 and a genetic 
correlation of 0.24 ± 0.03.

Larger reductions were estimated with indirect selection on the KO cores compared 
with direct selection on EME, agreeing with a previous study (Martínez-Álvaro et al., 
2022). The mean MeP in Australia was 462 g/d, and the mean MeC in Spain was 
1,310 ppm. We estimated that, by selecting the top 1% of the population, a reduction in 
MeP of 13.6% of the population mean in Australia per generation with direct selection 
(Figure 2), 15.8% with indirect selection on the core breeding Australia, and 19.4% by 
combining direct and indirect selection on the core breeding Australia. Similarly, by 
selecting the top 1% of the population in Spain, we estimated a reduction in MeC of 
8.9% of the population mean per generation with direct selection, 12.6% with indirect 
selection on core breeding Spain, and 14.4% by combining direct and indirect selection 
on the core breeding Spain. Fifteen KOs were shared between our core and the KOs 
reported in beef cattle by Martínez-Álvaro et al. (2022). Reductions of 7.0% and 4.8% 
of the EME population mean per generation were estimated in Australia and Spain, 
respectively (Figure 2). These 15 KOs were also estimated to increase the reduction 
on EME when combined with direct selection, compared to use only direct selection.

Selection response 
of enteric methane 
emissions

Results
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Figure 1. Heritability (h2) of KEGG ontology identifiers (KOs) of a ruminal metagenome core shared 
between two dairy cattle populations located in Australia and Spain; and the genetic (rg ) and phenotypic 
correlation (rp ) between these KOs and methane production (MeP) in the Australian and methane 
concentration (MeC) in the Spanish populations.

 

 
 
Figure 1. Heritability (h2) of KEGG ontology identifiers (KOs) of a ruminal metagenome core 
shared between two dairy cattle populations located in Australia and Spain; and the genetic 
(rg) and phenotypic correlation (rp) between these KOs and methane production (MeP) in the 
Australian and methane concentration (MeC) in the Spanish populations. 
 
 
 



464

Reducing dairy cattle enteric methane emissions

Proceedings ICAR Conference 2024, Bled

Figure 2. Estimated reduction by generation of enteric methane production (MeP) in 
Australian and enteric methane concentration (MeC) in Spanish dairy cattle populations. 
Red line: direct selection on enteric methane records. Blue: Indirect selection on ruminal 
microbial KEGG ontology identifiers (KOs). Green: Combination of direct selection on 
enteric methane records and indirect selection on KOs. In A and C, the KOs used are from a 
common core of 1,032 KOs shared between the populations located in Australia and Spain. 
A: Using 87 KOs with a heritability ≥ 0.20 in Australia and a genetic correlation ≥ with MeP. 
C: Using 42 KOs with a heritability ≥ 0.20 in Spain and a genetic correlation ≥ with MeC. 
B and D: Selection on 15 KOs shared between the Australian, Spanish dairy populations, 
and a beef cattle population (Martínez-Álvaro et al., 2022). 
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The large variance in EME explained by our 1,032 KO core suggests that the ruminal 
metagenome could be used to reduce EME, for example, by identifying and removing 
high-emitter animals based on their ruminal microbiome profile or providing feed 
additives designed to reduce emissions exclusively to higher-emitting animals instead 
of the whole herd. Larger reductions on EME were estimated when using our core than 
when using direct EME and these reductions were even higher when combining the 
ruminal features and the EME records. These results are consistent with a previous 
study (Martínez-Álvaro et al., 2022). The large EME reductions by selecting on the KOs 
could be expected because EME is not an intrinsic animal trait, but a characteristic of 
the ruminal microbial community. This microbial community is heritable and genetically 
correlated with EME (Figure 1). The core breeding Australia and core breeding Spain 
used to estimate the selection response was heritable (~0.27) genetically correlation 
with EME (rg = 0.30 in Australia; rg = 0.24 in Spain). Based on our results, the core 
breeding Australia and core breeding Spain could be considered as target traits for 
improvement in emissions reduction genomic selection programs, in combination with 
EME records. 

Genomic selection on a common ruminal metagenome core shared between Australia 
and Spain would lead to reductions in EME in both populations. These results indicate 
the potential for combining geographically diverse? reference populations in breeding 
programs through their ruminal metagenome, irrespective of each population’s EME 
trait (Figure 3). Additionally, 15 out the 30 KOs reported as associated with EME in 
beef (Martínez-Álvaro et al., 2022) were used to estimate reductions of up to 7% of 
EME’s population mean our dairy cattle populations (Figure 2). Further research could 
evaluate whether a common core between dairy and beef cattle, and other ruminants 
such as sheep, would reduce EME in all ruminant populations. Generating a reference 
population with EME measurements, ruminal metagenome and host genomics is 
costly and time consuming. Based on the results of this study, fostering international 
collaboration among the dairy, beef and other ruminant industries to combine diverse 
populations, EME traits, and environments through the rumen metagenomecould 
be beneficial for reducing global methane emissions. A common methodology is 
recommended for this purpose and based on our results, we present a methodology 
that (1) predicts most of the variance in EME, (2) potentially leads to significant EME 

Discussion

Figure 3. Sharing reference populations of the ruminal metagenome core facilitates prediction of enteric methane 
production (MeP) in Australia and enteric methane concentration (MeC) in Spain. Core breeding Australia: 
KOs with heritability ≥ 0.20 in Australia and genetic correlation with MeP ≥ 0.20. Core breeding Spain: KOs 
with heritability ≥ 0.20 in Spain and genetic correlation with MeC ≥ 0.20.
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reductions through informed farming and breeding decisions, and (3) could potentially 
connect reference populations irrespective of their EME traits.

•	 We have developed a methodology to predict enteric methane emissions (EME) 
from ruminants. Using this methodology, we detected a common core of 1,032 
KEGG ontology identifiers (KO) in the rumen metagenome of 834 dairy cows from 
Australia and Spain. This core explained up to 83% of the variation in EME with 
an accuracy of up to 0.38, which could potentially facilitate farming decisions aims 
to reduce methane emissions. 

•	 Large reductions in EME, of up to ~16% of the population mean per generation, 
could be achieved by selection on this core, being superior to direct selection on 
EME. A combination of direct selection on EME and indirect selection on the core 
would produce larger reductions (up to 19% of the population mean). These results 
suggest that rumen metagenome features could be candidate traits to improved- 
genomic selection programs along with EME records.

•	 Sharing reference populations of the ruminal metagenome core facilitates prediction 
of EME irrespective of each population’s EME trait. For this reason, we propose a 
global effort to validate a common core of ruminal features associated with EME. 

•	 If validated, our results could impact global ruminant emission reduction efforts.
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