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The ability of a dairy cow to perform similarly across time is an interesting trait to include 
in dairy cattle breeding programs aimed at improving dairy cow resilience. Consistency, 
defined as the quality of performing as expected each day of the lactation, could be 
highly associated with resilience, defined as animal’s ability to maintain health and 
performance in the presence of environmental challenges, including pathogens, heat 
waves, and nutritional changes. A total of 51,415,022 daily milk weights collected 
from 2018 to 2023 were provided for 255,191 multiparous Holstein cows milked three 
times daily in conventional parlor systems on farms in 32 states by Dairy Records 
Management Systems (Raleigh NC). 

The temporal variance (TempVar) of milk yield from 5 to 305 days postpartum was 
computed as the log-transformed variance of daily deviations between observed and 
expected individual milk weights. Lower values of TempVar imply smaller day-to-day 
deviations from expectations, indicating consistent performance, whereas larger 
values indicate inconsistent performance. Expected values were obtained using three 
nonparametric regression models: 

1. LOESS regression with a 0.75 span; 

2. polynomial quantile regression using the median (0.5), and 

3. polynomial quantile regression using a 0.7 quantile. 

The statistical model included age at first calving and herd-year-season as fixed effects 
and cow as a random effect. Heritability estimates (standard errors) of consistency 
ranged between 0.227 (0.011) and 0.237 (0.011), demonstrating that cows are 
genetically predisposed to display consistent or inconsistent performance. Correlations 
among TempVar traits were high (0.99), indicating that the model used to calculate 
consistency does not alter the ranking of Predicted Transmitting Abilities (PTAs). 
Genetic correlations between TempVar phenotypes and milk PTAs were 0.57, while 
longevity traits included Productive Life (-0.38) and Livability (-0.48). Note that as lower 
TempVar values are indicative of more consistent animals, negative genetic correlations 
with longevity traits are desirable. Our results show that cows with inconsistent milk 
production have lower Productive Life and Livability PTAs, meaning they have a shorter 
productive lifespan. Correlations between PTAs for log variance of daily milk yield and 
PTAs for early postpartum health traits ranged from -0.41 to -0.08. Given that health 
traits are derived from disease resistance measurements, this indicates that more 
consistent cows tended to have fewer health problems. Overall, our findings suggest 
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that lactation consistency can be used to select animals that maintain expected milk 
production performance throughout the lactation. 

Keywords: consistency, resilience, non-parametric modelling, daily milk weights.

The dairy industry has made enormous gains in production efficiency through 
improvements in genetics, nutrition, and management. Historically, genetic selection 
indexes emphasized increased milk production per cow, and more recently focused 
on improving fertility, disease resistance and feed efficiency (VanRaden et al., 2021). 
Modern intensive farming systems have prioritized the average performance of an 
animal in optimal conditions, whilst ignoring the animal’s ability to perform in variable 
or suboptimal conditions like extreme weather events, labour shortages and disease 
outbreaks. Resiliency is a measure of an animal’s capacity to bounce back to normal 
functioning or maintain specific functions in the face of such environmental disturbances 
(Scheffer et al., 2018). Resilience has been shown to be heritable in different species 
using high frequency daily observations such as daily milk weights (Poppe et al., 
2020), daily egg production (Bedere et al., 2022) and daily feed intake (Putz et al., 
2019). Our hypothesis is that consistency is an economically important indicator of 
resilience. Consistency is defined as a level of performance that does not vary greatly 
in quality over time. The aim of this study was to calculate TempVar phenotypes using 
the variance of daily milk weights routinely collected on dairy farms throughout the U.S. 
We investigated three different methods to model individual cows’ lactation curves. 
Genetic parameters and heritabilities of all three TempVar phenotypes, along with 
three different lactation stages were calculated for first parity Holstein cows. Secondly, 
genetic parameters, heritabilities and estimated genetic correlations among sire PTAs 
were calculated using a bivariate repeatability model for Holstein cows with parity 1, 
2 or 3. Finally, a multi trait model was used to calculate genetic correlations between 
three TempVar phenotypes and economically relevant trait among different parities. 

Data were provided by Dairy Records Management Systems (Raleigh, NC) and were 
extracted from PCDART on farm management software. Data were appended to a 
database built using the RSQLite package in R (R Project for Statistical Computing, 
Vienna, Austria; version 3.6.0). Individual milk weights are stored for up to 100 days 
while daily milk weights are stored for up to 300 days on the farm, so historical data 
are limited, and it was necessary to upload data from participating herds monthly and 
aggregate these data over time to build our SQLite research database. Data were limited 
to cows milked 3 times per day from 2018 to 2023 and estimated daily milk weights 
corresponding to days with missing values were removed. Cows milked by automatic 
milking systems (AMS) were excluded from the analysis. Outliers were identified and 
removed after decomposing the seasonal trend of the lactation curve with the Multiple 
Seasonal Trend decomposition method using the function tsclean from the forecast 
package in R (Hyndman et al., 2023). Tsclean is a robust method to identify outliers 
in a univariate time series analysis using a modified Z score, in which outliers are 
identified based on their distance from the median (Hyndman et al., 2023). Herds were 
required to participate in Dairy Herd Improvement (DHI) milk recording and recorded 
breed of cow was restricted to Holstein. After summing individual milk weights, a total 
of 51,415,022 daily milk weight phenotypes recorded between 5 and 305 days in milk 
(DIM) for 32 U.S. states remained for our analysis of milk yield TempVar (Figure 1).
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The first step was to fit lactation curves using daily milk weights. Loess (span 0.75), 
quantile regression (0.5) and quantile regression (0.7) with a 4th order polynomial 
were the nonparametric methods used to model expected lactation curves. Loess is a 
non-parametric modelling technique to model the relationship between variables. The 
quantreg package in R (version 3.6.0) (Koenker, 2020), along with the poly function, 
was used for quantile regression analysis. Cows were required to have at least 100 
aggregated daily milk weights within a lactation period to model a lactation curve. 
Outliers were identified and removed using the tsclean function from the forecast 
package in R. Tsclean is a robust method to identify outliers in a univariate time series 
analysis by using a modified Z score. The modified Z score calculates the deviation of 
each observation from the median, and outliers are identified based on their distance 
from the median relative to the median absolute deviation.

TempVar phenotypes were calculated in two steps. First, by measuring the deviations 
between a cow’s actual daily milk weights and her expected daily milk weights across 
the trajectory of her lactation, with expected values provided by the three lactation curve 
models described above. In the second step, the variances of these daily deviations 
were calculated. However, due to skewness of the distribution of variances across 
individual cows and lactations, a log transformation was applied to variances to derive 

Figure 1. Number of cows per state with records for either lactation 1, 2, and/or 3.
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three TempVar phenotypes, namely LnVar_loess, LnVar_qr05, and LnVar_qr07, for 
each method and each cow in step 2, as follows:

 

 

 
daily deviationijk =  

TempVarij =  

 
 

where i is the individual cow, j indicates parity and k represents DIM between 5 and 305. 
Thus, a consistent cow is defined by low temporal variation in actual versus predicted 
daily milk production throughout the lactation, and an inconsistent cow is defined by high 
temporal variation in actual versus predicted daily milk yield throughout the lactation. 

Our initial analysis, which was restricted to first parity cows, included 20,787,272 daily 
milk weights from 102,216 cows in 213 herds in 30 states. Variance components and 
genetic parameter estimates were obtained using the AIREMLF90 software (Aguilar 
et al., 2018). TempVar phenotypes were analyzed using the following model: 

yijkl = AFCi + HYSj + ak + eijkl,

where yijkl is the TempVar phenotype, AFCi is the fixed effect of age at first calving (6 
levels; <=22, 23-24, 25-26, 27-28, 29-30, 30+), HYSj is the fixed effect of herd-year-
season of calving (2,347 levels, with a minimum of 5 observations per level), ak is the 
random effect of cow with 102,216 levels distributed as a ~ N (0, Asa

2), and eijk is the 
random residual effect distributed as e ~ N (0, Ise

2). 

After fitting individual lactation curves for first lactation cows using LOESS and 
polynomial quantile regression, three different lactation stages based on DIM were 
considered to reflect early, mid, and late lactation. Early lactation ranged from 5 to 50 
DIM, mid lactation ranged from 51 to 200 DIM, and late lactation ranged from 201 to 305 
DIM. Individual cows were required to have daily milk weights spanning at least 50% of 
the period to be included in the analysis. In other words, at least 22 daily milk weights 
were required in early lactation, 75 daily milk weights were required in mid lactation, 
and 52 daily milk weights were required in late lactation. Consequently, a specific first 
parity cow could be included in the analysis for one, two, or the three periods. After 
edits, 66,297 cows were used to estimate genetic parameters in early lactation, 85,445 
cows in mid lactation, and 71,673 cows in late lactation. Variance components and 
heritability estimates for LnVar_loess, LnVar_qr05, and LnVar_qr07 were calculated 
within each lactation period using a univariate model, and relationships across periods 
were assessed using Pearson’s correlations of sire PTAs in different periods.

The edits described previously were subsequently applied to daily milk yield data of 
second and third parity cows to assess relationships in the TempVar of milk yield across 
parities. Cows were not required to have records in all three lactations because, given 
the structure of our database, the number of cows with records in multiple parities 
was limited. In the dataset, there were 36,589 cows with records in both parity 1 and 
2. Additionally, 25,702 cows had records in both parity 2 and parity 3. Furthermore, 
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5,496 cows had records in both parity 1 and parity 3. Finally, there were 4,904 cows 
with records in all three parities (parity 1, parity 2, and parity 3). We implemented a 
repeatability model, as well as two bivariate models (first and second lactation, second 
and third lactation), using a total of 51,415,022 daily milk weights records from 106,033 
first parity cows, 89,315 second parity cows and 59,843 third parity cows. These data 
represented 222 herds from 32 U.S. states (Figure 2). Variance components and 
genetic parameter estimates were obtained using the AIREMLF90 software (Aguilar 
et al., 2018). Fixed effects included parity (3 levels), age at calving (18 levels; <=22, 
23-24, 25-26, 27-28, 29-30, or 30+ months for first parity; <=35, 36-37, 38-39, 40-41, 
42-43, or 44+ months for second parity, and <=47, 48-49, 50-51, 52-53, 54-55, or 
56+ months for third parity), and herd-year-season (2,856 levels with ≥5 records per 
level). Cow was fitted as a random effect using up to five generations of pedigree data.

Repeatability model:

yijklmn = Parityi + CAj + HYSk + al + pem + eijklmn,

where yijklmn is the TempVar phenotype, Parityi is the fixed effect lactation number with 
3 levels, CAj is the fixed effect of calving age with 18 levels, HYSk is the fixed effect of 
herd calving year season with 2,856 levels, al is the random effect of cow with 255,191 
levels distributed as a ~ N (0, Asa

2), pem is the random permanent environmental effect 
distributed as pe ~ N (0, Ispe

2), and eijklmn is the random residual effect distributed as 
e ~ N (0, Ise

2). 

Multiple trait model:

yijkl = CAi + HYSj + ak + eijk,

where all model terms are as described previously. The assumptions of both bivariate 
analyses, which were carried out using first and second lactation TempVar phenotypes 
or second and third lactation TempVar phenotypes, were as follows:

where ai is the additive genetic effects for trait i, sai
2 is the additive genetic variance 

of trait i, saij is the additive genetic covariance between trait i and j, ei is the residual 
effect for trait i, sei

2 is the residual variance of trait i, and seij is the residual covariance 
between trait i and j.

Sires with ≥10 daughters with TempVar phenotypes (repeatability model, n=2,572) 
were used to calculate approximate genetic correlations between milk yield TempVar 
and other economically relevant traits using the Calo’s method (Calo et al., 1973; 
Blanchard et al., 1983). PTAs from economically relevant traits evaluated by the 
Council on Dairy Cattle Breeding (Bowie, MD) were extracted from the April 2023 
genetic evaluation. The approximate genetic correlations were calculated as follows: 

 

 

 

 ~ N  

 ~ N  

 

Correlations between 
temporal variance of 
milk yield and other 
economically relevant 
traits



120

Genetic analysis of lactation consistency

Proceedings ICAR Conference 2023, Toledo

Heritabilities (se) of TempVar phenotypes were moderate and ranged from 0.227 (0.011) 
to 0.237 (0.011) (Table 1). These heritabilities indicate two important concepts – that 
we can select for consistent milk performance genetically, and the non-parametric 
methods used to model lactation curves have little impact on our trait definition. We 
found differences in heritabilities among lactation stages (Table 2). In early lactation, 
the estimated heritabilities of TempVar phenotypes ranged from 0.129 (0.010) - 0.154 
(0.011), in mid lactation heritabilities ranged from 0.190 (0.011) to 0.197(0.011) and in 
late lactation from 0.159 (0.011) to 0.164 (0.011). Across all three TempVar phenotypes, 

 
where �̂�𝑟𝑖𝑖,𝑗𝑗  = approximate genetic correlation between traits i and j; ∑𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖 and ∑𝑅𝑅𝑅𝑅𝑅𝑅𝑗𝑗 = 
the sum of reliabilities of traits i and j; 𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖 and 𝑅𝑅𝑅𝑅𝑅𝑅𝑗𝑗 = reliabilities of traits i and j; and 
𝑟𝑟𝑖𝑖,𝑗𝑗 = Pearson correlation between PTA for traits i and j.  
 

Results and 
discussion

Table 1. Variance components and heritability estimates (SE)1 for temporal variance (TempVar) 
of daily milk yield in first parity Holstein cows over the entire lactation. TempVar phenotypes were 
calculated as log-transformed variances of daily deviations from lactation curves predicted with 
LOESS regression (0.75 span parameter) or polynomial quantile regression (0.5 or 0.7 quantile).

 

 

 
Method σa2 σe2 h2 

LnVar_loess 0.050 (0.002) 0.162 (0.001) 0.237 (0.011) 

LnVar_qr05 0.052 (0.002) 0.171 (0.002) 0.231 (0.011) 

LnVar_qr07 0.052 (0.002) 0.176 (0.002) 0.227 (0.011) 
1 σa

2 = additive genetic variance; σe
2 = residual variance; h2 = heritability. 

 

Table 2. Phenotypic means, standard deviations (SD), variance components and heritability estimates 
(SE)1 for the temporal variance (TempVar) of daily milk yield in first parity Holstein cows at 3 different 
lactation stages. TempVar phenotypes were calculated as log-transformed variances of daily deviations 
from lactation curves predicted with LOESS regression (0.75 span parameter) or polynomial quantile 
regression (0.5 or 0.7 quantile).

 

 

 

Method 
Lactation 

Stage Mean SD σa2 σe2 h2 
LnVar_loess 5 to 50 3.95 0.73 0.046 (0.003) 0.256 (0.003) 0.154 (0.011) 
 51 to 200 3.53 0.76 0.046 (0.002) 0.187 (0.002) 0.197 (0.011) 
 201 to 305 3.42 0.77 0.043 (0.003) 0.221 (0.002) 0.164 (0.011) 
LnVar_qr05 5 to 50 3.72 0.80 0.049 (0.003) 0.312 (0.003) 0.136 (0.010) 
 51 to 200 3.56 0.77 0.047 (0.002) 0.196 (0.002) 0.194 (0.011) 
 201 to 305 3.43 0.78 0.043 (0.003) 0.225 (0.002) 0.161 (0.011) 
LnVar_qr07 5 to 50 3.75 0.81 0.048 (0.003) 0.326 (0.003) 0.129 (0.010) 
 51 to 200 3.56 0.77 0.047 (0.002) 0.200 (0.002) 0.190 (0.011) 
 201 to 305 3.44 0.78 0.043 (0.003) 0.230 (0.002) 0.159 (0.011) 

1σa
2 = additive genetic variance; σe

2 = residual variance; h2 = heritability. 
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estimates of the additive genetic variance were highest during the period from 5 to 50 
DIM. This is an interesting and promising result, as it seems to indicate that genetic 
differences in milk yield consistency are expressed more fully under challenging 
conditions, albeit with the complication of greater residual variances. Mulder et al. 
(2013) previously indicated that greater genetic variation in resilience would be observed 
when an animal is exposed to environmental challenges. Increased variation in daily 
milk production during this period may reflect the challenges of decreased voluntary 
feed intake, coupled with the physiological demands of rapid increases in energy 
requirements for milk production (White, 2015). Previous authors have described 
challenges such as negative energy balance (Collard et al., 2000), hyperketonemia 
(Duffield et al., 2009), and resumption of ovarian cyclicity (Gaillard et al., 2016) during 
this period, all of which can contribute to an increase in the environmental variance. 
Heritabilities were lowest for LnVar_qr07 across all three lactation stages. This is 
most likely caused by fitting the 0.7 quantile, which reflects the animals potential milk 
production and could be more informative for calculating resilience indicators (Poppe 
et al., 2020)

The assumption of the repeatability animal model is that the genetic correlation 
between records is equal to 1, indicating that TempVar traits are genetically identical 
across parities. In table 4, genetic correlations among different parities for each 
TempVar phenotype are shown. Genetic correlations (se) ranged from 0.963 (0.010) 
to 0.999 (0.003) which indicated that consistency is the same trait regardless of 
parity. Repeatability (se) ranged from 0.331 (0.003) to 0.341 (0.003) indicating that 
the genetic influence on consistent performance is relatively stable and repeatable 
over time, suggesting that selection for that trait is likely to be effective (Table 3). 
Because first lactation cows are immature and still growing, many traits are genetically 
or physiologically distinct between primiparous and multiparous cows. Therefore, we 
decided to estimate heritability, repeatability, and genetic correlations of TempVar 
phenotypes in first, second, and third parities. Heritability estimates were slightly lower 
when calculated using the repeatability model, but relatively few cows had TempVar 
phenotypes for multiple parities, because daily milk yield records from cows that calved 
prior to initiation of our research database were unavailable. Genetic correlations among 
TempVar phenotypes were >0.95 between parities (Table 4), indicating that TempVar 
phenotypes are genetically quite similar throughout the cow’s life, and suggesting that 
we should consider milk yield consistency as the same trait across lactations.

Table 3. Variance components and heritability estimates (SE)1 for the temporal variance (TempVar) of daily 
milk yield using a repeatability model applied to full lactation data of cows with records in lactation 1, 2 and/
or 3.TempVar phenotypes were calculated as log-transformed variances of daily deviations from lactation 
curves predicted with LOESS regression (0.75 span parameter) or polynomial quantile regression (0.5 or 
0.7 quantile).

 

 

 
 

Method σa2 σpe2 σe2 h2 r2 
LnVar_loess 0.052 (0.001) 0.026 (0.001) 0.151 (0.001) 0.227 (0.006) 0.341 (0.003) 

LnVar_qr05 0.053 (0.001) 0.026 (0.001) 0.158 (0.001) 0.222 (0.006) 0.339 (0.003) 

LnVar_qr07 0.053 (0.001) 0.028 (0.001) 0.164 (0.001) 0.216 (0.006) 0.331 (0.003) 
1 σa

2 = additive genetic variance; σpe
2 = permanent environmental variance; σe

2 = residual variance;  
h2 = heritability; r2 = repeatability. 
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Table 4. Variance components and heritability estimates (SE) using a multiple-trait 
model applied to full lactation data of cows with records in lactation 1, 2 and/or 3. 
Phenotypes representing the temporal variance in daily milk yield were calculated 
as log-transformed variances of daily deviations from lactation curves predicted 
with LOESS regression (0.75 span parameter) or polynomial quantile regression 
(0.5 or 0.7 quantile).

 

 

 
  Method 
Lactation No. of cows LnVar_loess LnVar_qr05 LnVar_qr07 

1 and 2 195,348 0.976 (0.006) 0.977 (0.006) 0.978 (0.006) 

1 and 3 165,876 0.963 (0.010) 0.963 (0.010) 0.964 (0.010) 

2 and 3 149,158 0.998 (0.003) 0.999 (0.003) 0.999 (0.003) 

 
 

Table 5. Correlations estimated using the Calo’s method between sire PTAs 
for temporal variance (TempVar) of daily milk yield and other economically 
relevant traits. PTAs for TempVar were obtained for sires with ≥ 10 daughters 
using a repeatability model applied to full lactation data of cows with records 
in lactation 1, 2 and/or 3. PTAs for production, longevity, fertility, health, and 
efficiency were retrieved from the April 2023 National Genetic Evaluation 
generated by the Council on Dairy Cattle Breeding. TempVar phenotypes 
were calculated as log-transformed variances of daily deviations from lactation 
curves predicted with LOESS regression (0.75 span parameter) or polynomial 
quantile regression (0.5 or 0.7 quantile).

 

 

 

 Method 

Trait LnVar_loess LnVar_qr05 LnVar_qr07 

Milk (lb) 0.57 0.57 0.57 

Fat (lb) 0.11 0.11 0.11 

Protein (lb) 0.39 0.39 0.39 

Productive Life (months) -0.38 -0.38 -0.38 

Livability -0.48 -0.48 -0.48 

Heifer Livability -0.04 -0.04 -0.04 

Daughter Pregnancy Rate (%) -0.42 -0.42 -0.42 

Heifer Conception Rate (%) -0.20 -0.20 -0.20 

Cow Conception Rate (%) -0.41 -0.41 -0.41 

Gestation Length -0.02 -0.02 -0.02 

Early First Calving 0.06 0.05 0.05 

Somatic Cell Score 0.26 0.27 0.27 

Milk Fever -0.08 -0.08 -0.08 

Displaced Abomasum -0.25 -0.25 -0.25 

Ketosis -0.28 -0.28 -0.29 

Mastitis -0.41 -0.42 -0.42 

Metritis -0.21 -0.20 -0.20 

Retained Placenta -0.10 -0.10 -0.10 

Residual Feed Intake 0.05 0.05 0.05 

Feed Saved -0.05 -0.04 -0.04 
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Estimated genetic correlations showed favourable relationships between TempVar 
phenotypes and several traits included in the U.S. Net Merit selection index. 
Interestingly, the correlation between TempVar phenotypes and milk was 0.57 indicating 
that as milk production increases, TempVar phenotypes increase. This reflects the 
scaling relationship between mean and variance where we expect milk yield and 
TempVar PTAs to increase simultaneously. Interestingly, for all health-related traits, 
the estimated genetic correlations among sire PTAs were negative. Specifically, for 
displaced abomasum, ketosis, mastitis, and metritis we found moderate correlations 
ranging from -0.21 to -0.42. Correlations between TempVar phenotypes and somatic 
cell score (SCS) ranged from 0.26 to 0.27, which is also favourable as a higher SCS 
indicates higher levels of mastitis (Table 5). This is logical, because consistent cows 
will tend to have fewer disease events, fewer visits to the hospital pen, and fewer 
management interventions that may cause fluctuations in daily milk yield. The strongest 
correlations observed in this study were between milk yield TempVar and mastitis, 
presumably because mastitis is a common disease that causes large decreases in 
milk production (Liang et al., 2017; Seegers et al., 2003). Overall, lower temporal 
variance (consistent performance) was associated with superior health, longevity, and 
fertility. It should be noted that, while we required a minimum of 100 daily milk weights 
to compute TempVar phenotypes in the present study, we recognize that fragile cows 
with health or fertility problems may get culled at a higher rate than resilient cows, and 
we should therefore recognize that improvements in generalized resilience will likely 
come from a selection index containing PTAs for milk yield TempVar, longevity, and 
early postpartum health disorders. Correlations of TempVar traits with feed efficiency 
were near zero, suggesting that selection for lower residual feed intake and greater 
feed saved will increase farm profitability (Parker Gaddis et al., 2021) with no adverse 
impacts on resilience.

This study aimed to examine the genetics of milk yield consistency within and between 
lactations of U.S. Holstein cows. Our findings suggest that TempVar is moderately 
heritable, which may allow selection to focus on cows with smaller fluctuations in daily 
milk yields throughout lactation than their contemporaries. TempVar phenotypes appear 
to be robust to the choice of lactation curve models, and genetic rankings seem to 
be consistent across lactations. Cows displaying superior milk yield consistency tend 
to be genetically superior for productive life, female fertility, and resistance to early 
postpartum health disorders relative to their inconsistent contemporaries. Definition 
of consistency phenotypes and characterization of their genetic basis is an important 
initial step in developing resilience indicators that will allow selection for consistent 
performance in unpredictable conditions. Improving resilience will lead to improvements 
in dairy farm profitability, reduce animal health and welfare risks associated with 
management and weather disturbances, and improve the social and environmental 
sustainability of dairy farming.
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