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General aspects of measuring animal health and 
welfare using sensor technology



Milk, but which one? 



How are consumers informed about animal welfare?



farmers consumers

https://www.clearfarm.eu/



Is it possible to 
classify dairy 
cattle 
according to 
their welfare 
status using 
sensor data?
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Poor



Data collection
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Small pilots: February-June 2021 

Herd size (enrolled to the pilots)

6 herds and 318 cows 



Data labelling
Welfare index → based on WQ (14 measures):

✓ Good feeding (1)

✓ Good housing (4)

✓ Good health (9)

WQ visits or medication data 

Weather data

Severity and duration (literature)  







Sensors (27,500 rows of data):
1) Accelerometers (walking, 

standing, lying, eating, 
ruminating, other 
behaviour)

2) Milk production data (kg)

Non-sensor data: 
1) Days in milk
2) Lactation number



Features processing:

1) Smoothening of sensor 
features – moving average 
for different window widths 
(5, 7 and 10 days)

2) Normalization (Min-max and 
Z score)



Modelling approach

• Model building XGBoost (eXtreme Gradient Boosted trees) 

• Objective – multi classification (multi:softprob), but can be also 
binomial or regression 

• XGBoost Hyperparameters selection (e.g. Eta- learning rate, 
Max_dept – depth of the tree, Min_child_weight – control 
overfitting)

• Model input → around 30 variables (mean and sd of sensor data, 
slope and differences in time windows, days in milk and lactation 
number)

• Data weighing procedure – combination on time from WQ 
assessment and frequency information



Global & herd specific models



Cross-validation 
strategies

Sensitivity Specificity AUC Balance 
accuracy
Yellow 
class

Balance 
accuracy 
Blue class

The global model 0.43 (±0.22) 0.68 (±0.12) 0.53 (±0.04) 0.52 (±0.10) 0.63 (±0.02)

Herd model 0.64 (±0.22) 0.80 (±0.13) 0.70 (±0.04) 0.68 (±0.09) 0.77 (±0.02)



VI V II IV I III

Computation time in herd specific model was 2 minutes 28 seconds



1) Model robustness- a combination of in-person and 
algorithm-based welfare evaluation is needed to 

2) Welfare definition- still challenging
3) Missing predictors - farms with varying degrees of 

digitalization
4) Stakeholder engagement - to meet the needs of the 

end users

Lesson learned –implications from 
the proof-of-concept



Thank you
for your attention!

Follow us at www.clearfarm.eu
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