Success Stories in Herd Management

Robert H. Fourdraine

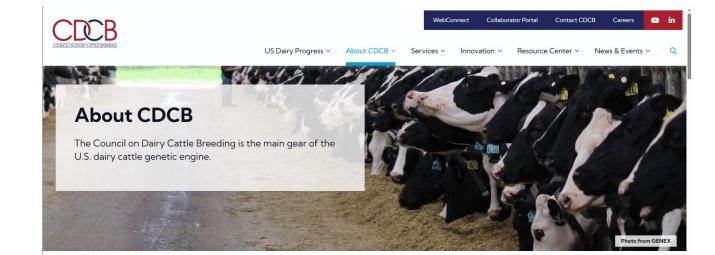
ICAR 2023 Annual Meeting

MANAGEMENT SYSTEMS

2 Way Integration

 There has been a long standing precedence between providers of herd management software programs and parlor manufacturers to exchange data. (DRMS - 35 years)

Animal ID, Location, Status changes, Breeding information

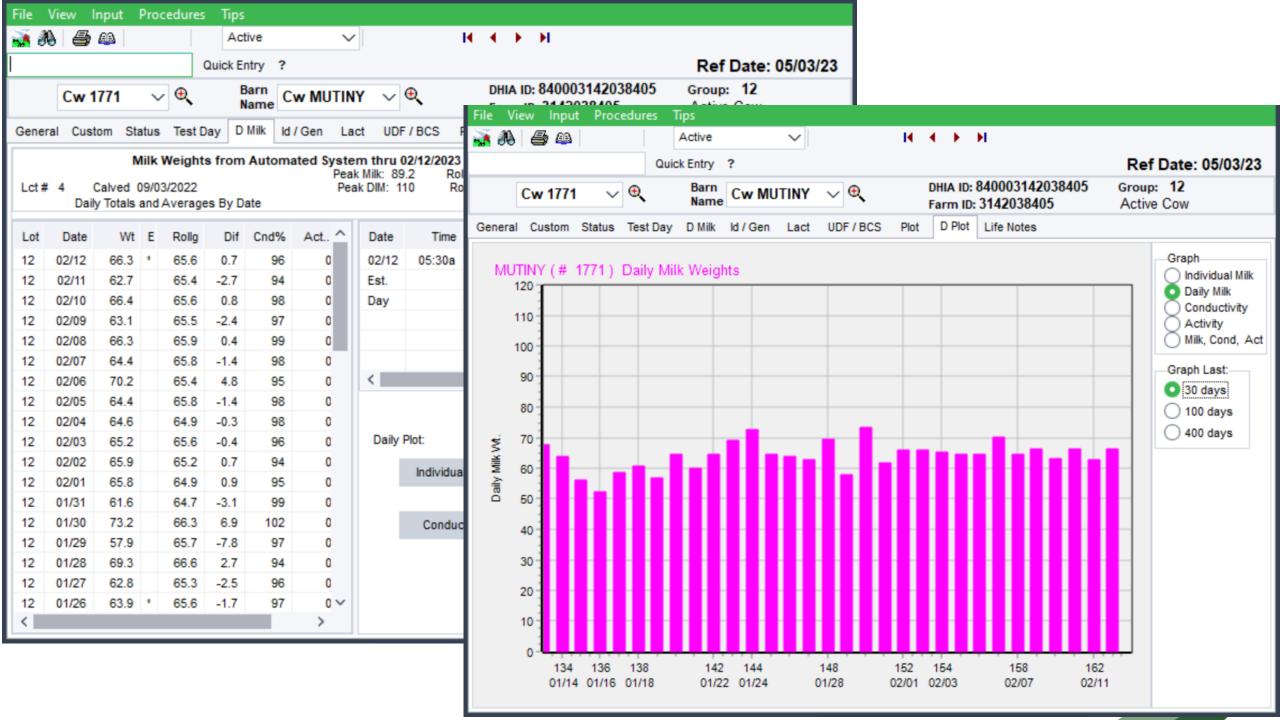


Dutchland Dairy

ICAR 2023 Annual Meeting

Data Uses

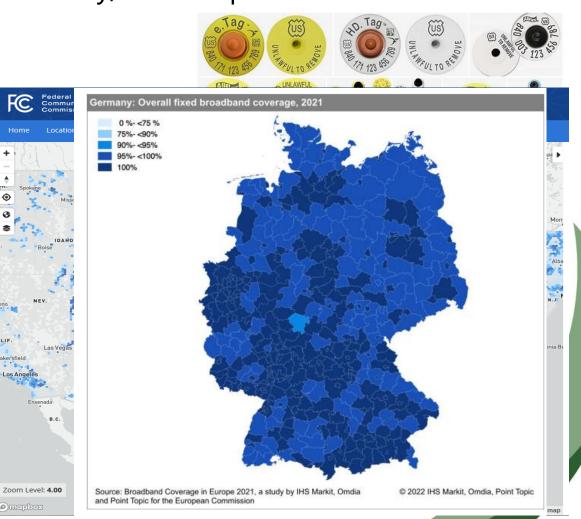
- DHIA Milk Recording
- Genetic Evaluations
- Management Reports
- Parlor performance
- Sort Gates
- Calf/Heifer growth



Who We Are

CDCB collaborates with U.S. and global partners to produce premier dairy genetic evaluations and data services. These CDCB results benefit dairy farmers worldwide as they work to improve the health and productivity of their cattle. The CDCB maintains the actional hearth data to be a the world's benefit being the base the interaction.

	t Differ(_		cing Num	ber ****	******	******	*****	ł					
Stall	02-12	02-12	02-11	02-11	02-1	LO 02-1	0 02-09	02-09	02-08	02-08	3					
No.	1	2	1	2	1	2	1	2	1	2						
101	-0.6	-0.6	-8.8	+2.6	-0.7	7 +3.2	+3.3	-0.6	-2.1	+0.9						
102	-2.6	-2.6	-3.1	-5.1	-2.8	3 +0.9	+2.1	-8.2	-3.6	-8.9						
103	-3.8	-3.8	-0.7	-3.1	-1.0	0 -10.5	+2.0	-5.6	+1.3	-2.1						
104	-11.8	-11.8	+2.6	-2.1	+1.3	3 -0.9	+1.4	+0.5	0.0	+0.4						
105	+18.4	+18.4	+6.9	+11.5	+14.4	4 +13.8	-5.3	+14.9	-1.1	+4.1						
106	+0.0	+0.0	-1.7	+3.2	-4.1	L -0.9	+5.5	+3.2	+1.9	+4.7						
107	-4.0	-4.0	-1.0	-2.6	-5.2	2 -1.8	-1.6	+0.1	-1.3	-1.7						
108	-3.0	-3.0	+0.2	-3.7	-2.8	3 -4.6	+1.3	+3.7	-2.1	-3.2						
201	+5.5	+5.5	-0 6	-2 1	+3	5 <u>∔8 1</u>	+3 1	⊥4 1	⊥ 3 2	+6 4						
202	+13.2	+13.2	+0		MM	No. Avg	Avg *	**** FI	low Rate	e/Min *	*****	Milk	%Mlk	*Low	Flow*	*Reatt
203	-0.9	-0.9	-0	Milk	Lot C	Cows Mlk	Dur A	vg 0-15	5 15-30	30-60	60-120	2min	2min	Time	&Tot	Erly Lat
204	+4.7	+4.7	+13	-												-
205	-4.8	-4.8	-3	1	1	37 44	3.3 13	.8 0.3	6.3	8.3	10.4	16 2	37	0 5	16	
206	-3.8	-3.8	+0	1	2	39 32						15.0			21	
207	-7.2	-7.2	-4	1	3	39 40				-52.3					17	
208	-4.8	-4.8	-5	1	4	30 48						15.5			17	
					12	22 32						13.1			21	
AV.	-0.4	0.0	-0		14	7 30				-334.6		328.0-			3 27	
				_	15	20 26				7.3		12.8			21	
				-	15	20 20	2.0 10			1.5	1.0	12.0	15	0.5	21	
				Milki	ng 1	194 38	3.1 12	.6 0.2	2 5.7	-16.6	9.6	-9.5	-25	0.6	19	
				Daily		194 38	3.1 12	.6 0.2	2 5.7	-16.6	9.6	-9.5	-25	0.6	19	


Integration Opportunities

- Sensor Technologies
 - Heat Detection
 - Animal Health (Rumination)
- Milking Equipment
 - Udder Health (SCC)
 - Milk Components
- Camera (visual) technologies
 - Body Condition
 - Lameness
 - Feeding Time

U.S. Challenges

- Lack of National Animal ID system
 - Animal Health Agencies requirements <> Industry/Farm requirements
 - Leads to multiple ID systems
- Lack of standardized RFID technology
 - Low frequency versus high frequency tech
 - Reusable ID devices
- Internet availability and speed still proble
 - Herd size Amount of data to exchange
- Local installations can pose significant ch
 - Computer Networking and Security
 - Computer Hardware

Technical Challenges

- Growing number of providers of sensor technology
 - Significant effort to build integrations when is the right time?
 - Many new providers (startups) are using the technology in research/experimental herds
 - Available technology
 - Local versus Host (Is high speed internet available?)
 - API versus data file sharing
 - U.S. Large dairies Multiple technologies used on a single farm/enterprise
- Growing number of integration solutions are unique to the provider
 - Standardization of data
 - Use within herd management software Actionable or Informative?
- Versioning of integrations
- Intellectual Property
 - Which data is available for exchange Measurement or Condition?
 - Storage and Use

Summary

- Historically there has been close collaboration
 - Recognizing mutual benefits
 - Trust about use and protection of the data
- Dairy Farmers expect systems to work together
- U.S. challenges
- Technical challenges related to integrations
- Business (IP) challenges
 - Do companies want to built integrations with other parties?
 - Data integrations as a revenue source vs doing what's best for the producer
 - More concerning long term
 - Stifle innovation across the overall dairy industry
 - Lack of integrations leads to unhappy producers

Thank You

Acknowledgements: DRMS Staff

MANAGEMENT SYSTEMS