Analysis of methane measured in young dairy sires after accounting for variation in dry matter intake

Rhiannon Handcock

The Helical Company - rhiannon@helicalco.com

23/05/2023

Feb 2021

LIC• 138 bulls• Aged 6-10 months

Data Collection Timeline

Dec 2022

Feb 2021

LIC

٠

Data Collection Timeline

138 bulls Aged 6-10 months

- 122 bullsAged 12-16 months

Data Collection Timeline

Feb 2021

Data Collection Timeline

Data

- Daily methane (CH4; g/day)
 - Measured via Greenfeed visits
 - Visits vary in number and duration
 - Total time per day 120 to 4,222s (2-70 min)
 - Mean time was 893s

(~15min)

- Daily dry matter intake of pen-fed animals
- Genotypes
 - A mix of panels of varying densities
 - Approximately 6,300 SNPs in common

Model

- JWAS in Julia
- MCMC chains of 200,000 plus 25,000 chain burn-in keeping every 10th sample
- Y = CG + Year + pJ + het + BullPermEnv + BullBV + e
 - CG day-group-pen assignment
 - Year location-year combination
 - pJ proportion of Jersey breed
 - het heterosis coefficient between Holstein-Friesian and Jersey
 - BullPermEnv random permanent environmental effect of bull
 - BullBV random genetic effect of bull

	CH4 (g/day)	DMI (kg/day)
Heritability	0.10	0.10
	(0.06, 0.16)	(0.05, 0.17)
Repeatability		
Genetic Variance		
Perm Env Variance		
Residual Variance		
Phenotypic Variance		
95% lower and upper credibility intervals in parer	ntheses	He

	CH4 (g/day)	DMI (kg/day)
Heritability	0.10	0.10
	(0.06, 0.16)	(0.05, 0.17)
Repeatability	0.30	0.37
	(0.27, 0.34)	(0.34, 0.41)
Genetic Variance		
Perm Env Variance		
Residual Variance		
Phenotypic Variance		
		He
lower and upper credibility intervals in paren	theses	

	CH4 (g/day)	DMI (kg/day)
Heritability	0.10	0.10
	(0.06, 0.16)	(0.05, 0.17)
Repeatability	0.30	0.37
	(0.27, 0.34)	(0.34, 0.41)
Genetic Variance	202	0.43
	(113, 325)	(0.22, 0.76)
Perm Env Variance	395	1.13
	(295, 498)	(0.85, 1.41)
Residual Variance	1,365	2.63
	(1,331, 1,398)	(2.57, 2.70)
henotypic Variance	1,961	4.19
		(3.97,4.47)

Methane and Dry Matter Intake

	Correlations
Genetic	0.48
UEHELIC	(0.12, 0.73)
Phonotypic	0.28
Phenotypic	(0.24, 0.32)

- Genetic correlations higher than phenotypic correlations
- 95% CI wider for genetic correlations than phenotypic correlations
- All have significant density above zero
- Selection for lower methane would be associated with lower intakes

Residual Methane

Genetic and Statistical Properties of Residual Feed Intake

Kennedy B, Van Der Werf J, Meuwissen T

Journal of Animal Science, (1993), 3239-3250, 71

- Residual methane EBVs from a selection index using methane and DMI EBVs
- Residual methane that is independent of *phenotypic* DMI
 - Selection for genetic residual methane where correlated changes in DMI do not compromise the overall selection efforts
- Residual methane that is independent of *genetic* DMI
 - Selection for residual methane while holding DMI EBV constant

Phenotypic regression

 $CH4_phen_EBV = CH4_EBV + -6.06*DMI_EBV$

Genetic regression

P =	CH4	DMI
CH4	1961	25.4
DMI	25.4	4.19
G =	CH4	DMI
CH4	202	4.6
DMI	4.6	0.43

 $CH4_gen_EBV = CH4_EBV + -10.7*DMI_EBV$

EBV correlations

- CH4_phen_EBV = Methane_EBV + -6.06*DMI_EBV
- CH4_gen_EBV = Methane_EBV + -10.7*DMI_EBV

Summary to date:

- Heritability and repeatability of daily methane yield in bulls were low to moderate
- Repeatability is not high so more measurements will improve prediction accuracy
 - but this comes at a cost (fewer bulls or larger facility)
- Genetic and phenotypic correlations between methane and DMI were positive
- After accounting for genetic variation in DMI, there was genetic variation in methane remaining

Scope exists to reduce daily methane yields while maintaining DMI

