GREENFEED & SNIFFER
SOP REPORT

Benzoni Lorenzo (ANAFIBJ)
Raffaella Finocchiaro (ANAFIBJ)
Birgit Gredler-Grandl (WURL)

Members of ICAR Feed & Gas Working Group
ACKNOWLEDGEMENTS

Authors are, in alphabetical order:

Lorenzo Benzoni, ANAFIBJ, Italy
Donagh Berry, Teagasc, Ireland
A.E. van Breukelen, Wageningen Livestock Research, Netherlands
Elizabeth Dressler, Kansas State University, USA
Raffaella Finocchiaro, ANAFIBJ, Italy
Birgit Gredler-Grandl, Wageningen Livestock Research, Netherlands
Roger Hegarty, University of New England, Australia
Lisanne Koning, Wageningen Livestock Research, Netherlands
Ciarán Mc Donnell, Irish Cattle Breeding Federation, Ireland
Lorna McNaughton, Livestock Improvement Corporation (LIC), New Zealand
Gail Ritchie, University of Guelph, Canada
Aser Garcia-Rodriguez, Instituto Nacional de Investigación y Tecnología Agraria, Spain
Oscar Gonzalez-Recio, Instituto Nacional de Investigación y Tecnología Agraria, Spain
Caeli Richardson, 2023 ICAR Brian Wickham Young Person Exchange Program (BWYPEX)
Trine Villumsen, Aarhus University, Denmark
INTRODUCTION

• Dairy cattle is known to be impactful on greenhouse gases (GHG) emissions for over 10% of livestock sector emission globally (Gerber et. Al., 2013);

• Methane (CH₄) and carbon dioxide (CO₂) emissions have been shown to be heritable, providing the basis for applying genetic selection for their reduction (Cassandro et al., 2010);

• National breeding programs and the genetic improvement can provide relevant contribution to reduce GHG emissions;

• Many Universities, Research Centers and Associations have started collecting phenotypes all over the world years ago.
INTRODUCTION

WEBINARS

• 5th December 2022: GreenFeed Standard Operating Procedure Dairy Cattle

• 7th December 2022: GreenFeed Standard Operating Procedure Beef Cattle

• 23rd February 2023: Sniffer Standard Operating Procedure
OBJECTIVE

• Share knowledge on GreenFeed and Sniffer operating procedure;

• Share tips, tricks and trouble-shooting data recording using Greenfeed and Sniffer systems;

• Revision of the ICAR Guidelines (Section 20 - Recording Dairy Cattle Methane Emission for Genetic Evaluation).
<table>
<thead>
<tr>
<th>GREENFEED</th>
<th>SNIFFER</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. EQUIPMENT DESCRIPTION;</td>
<td>1. EQUIPMENT DESCRIPTION;</td>
</tr>
<tr>
<td>2. EXPERIMENTAL PROTOCOLS;</td>
<td>2. EXPERIMENTAL PROTOCOLS;</td>
</tr>
<tr>
<td>3. TRAINING AND ADAPTATION PERIOD;</td>
<td>3. TRAINING AND ADAPTATION PERIOD;</td>
</tr>
<tr>
<td>4. PROBLEMS FACED AND UPGRADES.</td>
<td>4. PROBLEMS FACED AND UPGRADES.</td>
</tr>
</tbody>
</table>
EQUIPMENT DESCRIPTION

LOCATION

INDOOR

• **Solid**, non-slatted floor;
• Homogeneous **ventilation**;
• Irregular **ventilation** may negatively affect estimation;
• **Trailer**.

OUTDOOR

• **Solid** place (not in the mud);
 • Nearby **grazing site**;
• **Phone/Internet connection**;
• Good **sunlight** (if equipped with solar panels);
• Plastic and waterproof **cover**;
• **Trailer** (only for short moving);
• **Weather station** on top.
EQUIPMENT DESCRIPTION
SIDE SHIELDING

• Good side shielding must be **0.80-0.90 m wide and adjustable**, at least **2.5 m long**, both indoor and outdoor;

• WUR (NL) have created a “L-port gate” that closes behind the animal, so it cannot be pushed out of the unit by other cows. Cows that use this “L-port gate” are calmer.

Thanks to Lisanne Koning (WUR)
EQUIPMENT DESCRIPTION

NOISE AND FEED

• All users consider positive the ventilation noise of the GreenFeed fan. This ventilation noise is easily associated by the animals with the supply of feed, so the animals adapt more quickly.

• It is recommended to use a pellet feed with a diameter of less than 7 mm as suggested by C-Lock. Few users use feed blocks.
EXPERIMENTAL PROTOCOLS

• **10 – 40 animals** per GreenFeed unit;

• The overall duration of the trial varies, from a **minimum of 7 days up to a year**, both indoor and outdoor, according to the purpose of the experimental trial;

• The **wide variability** of the experimental protocol variables can be summarized as follows:

<table>
<thead>
<tr>
<th></th>
<th>INDOOR</th>
<th>OUTDOOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>DROP DISPENSE INTERVAL</td>
<td>10 - 60 seconds</td>
<td>10 - 30 seconds</td>
</tr>
<tr>
<td>MIN. TIME BETWEEN FEEDING PERIODS</td>
<td>7.200 - 21.600 seconds (2 - 6 hours)</td>
<td>3.600 - 14.400 seconds (1 - 4 hours)</td>
</tr>
<tr>
<td>MAX. DROPS PER FEEDING TIME</td>
<td>4 - 25</td>
<td>4 – 25</td>
</tr>
<tr>
<td>MAX. FEEDING PERIODS</td>
<td>4 - 12</td>
<td>4 - 12</td>
</tr>
</tbody>
</table>
TRAINING AND ADAPTATION PERIOD

- The overall **duration** of the training and adaptation period lasts from **7 to 20 days**, both indoor and outdoor;
- Slightly **adjust the “drop dispense interval”**, for example, reducing it to 10 seconds in first days of adaptation, then increasing it to 20 seconds and then use the experimental protocol;
- Set the **funnel** at the largest size and **reduce it regularly** day by day up to the end of the training period and the start of the experimental trial;
- When based on grazing, it is important that the machine is moved to **fresh pasture**;
- **Spread concentrates** in the chute or use salt licks.
PROBLEMS FACED AND UPGRADES

<table>
<thead>
<tr>
<th>PROBLEM</th>
<th>SOLUTION</th>
<th>SUGGESTIONS/UPGRADES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feed clogging in the bin</td>
<td>Unclog the feed bin and try a more solid pellet. Prevent the feed bin from moist.</td>
<td>Extra molasses in feed pellet.</td>
</tr>
<tr>
<td>Motor problem</td>
<td>Replaced using C-Lock spare parts and assistance.</td>
<td></td>
</tr>
<tr>
<td>Airflow problems</td>
<td>Replaced using C-Lock spare parts and assistance.</td>
<td></td>
</tr>
<tr>
<td>Connectivity problem</td>
<td>Replaced using C-Lock spare parts and assistance.</td>
<td>In alternative, purchase an external Wi-Fi router or SIM-card router.</td>
</tr>
<tr>
<td>Power supply problem</td>
<td>Replaced using C-Lock spare parts and assistance.</td>
<td></td>
</tr>
<tr>
<td>Leaky CO₂ cylinder and lower CO₂ release</td>
<td>Replaced CO₂ cylinder by C-Lock.</td>
<td>Make sure to never hold the CO₂ tool upside down when attached to a CO₂ cylinder.</td>
</tr>
<tr>
<td>PROBLEM</td>
<td>SOLUTION</td>
<td>SUGGESTIONS/UPGRADES</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Concentration sensor</td>
<td>Replaced using C-Lock spare parts and assistance.</td>
<td></td>
</tr>
<tr>
<td>Shipping time and shipping issues in some parts of the world (e.g., Europe and Oceania)</td>
<td></td>
<td>List of “must have spare parts” to create a personal warehouse. European or Oceanian dealer?</td>
</tr>
<tr>
<td>Feed bin brush chewed by a rodent</td>
<td>Tack on feed bin chute.</td>
<td>Internal component more sealed.</td>
</tr>
</tbody>
</table>

- C-Lock assistance is generally very **good** (video tutorials, operating instructions...).
SNIFFER
EQUIPMENT DESCRIPTION

• Several suppliers of this product are available, but all systems share the **same basic structure**;
• Generally installed on **AMS or AFS**;
• Essential a filter at level of the suction tube to avoid **clogging the cylinder by saliva, feed or dust**;
• At least two gas meters: **CH₄ and CO₂**. Further gas meters are considered a plus;
• Gas Card **sensitivity**: 0-10,000 ppm for CH₄; 0-50,000 ppm for CO₂;
• **5G/ Wi-Fi connection**;
• Hard disk is necessary to ensure **data storing**;
• If not waterproof, provide a **waterproof cover**.
EXPERIMENTAL PROTOCOLS

• No particular experimental protocols are applied. Once installed, the system runs continuously;

• Change in diet are not required;

• Routinely calibration. Advanced sniffers are provided with self zero and span (semi) automatic calibration.
TRAINING AND ADAPTATION PERIOD

• Training, handling or adaptation period are **not required.**
PROBLEMS FACED AND UPGRADES

<table>
<thead>
<tr>
<th>PROBLEM</th>
<th>SOLUTION</th>
<th>SUGGESTIONS/UPGRADES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clogging problems</td>
<td>Clean tubes with pressured air manually.</td>
<td></td>
</tr>
<tr>
<td>Animals identification</td>
<td>Antenna for ID reader is not always successful. Use AMS data identification and merge them later.</td>
<td></td>
</tr>
<tr>
<td>Calibration procedure not standardized.</td>
<td>Good technician who monitors sniffers’ activities on daily basis and knows AMS and/or AFS working.</td>
<td></td>
</tr>
<tr>
<td>Personnel in charge of the trial</td>
<td>Good technician who monitors sniffers’ activities on daily basis and knows AMS and/or AFS working.</td>
<td></td>
</tr>
</tbody>
</table>
CONCLUSIONS

• GreenFeed and Sniffer are two different systems, but to date they are the most reliable;

• Definition of SOP and Guidelines are only first steps;

• Further steps:
 • Data editing;
 • Trait definition;
 • Breeding objective;
 • Phenotypic and genetic analysis.
THANKS!

Lorenzo Benzoni
Raffaella Finocchiaro
Birgit Gredler-Grandl (WUR)

lorenzobenzoni@anafi.it
raffaellafinocchiaro@anafi.it
birgit.gredler-grandl@wur.nl

www.anafibj.it
https://www.icar.org/index.php/technical-bodies/working-groups/working-groupsfeed-and-gas/
Anafibj is looking for an animal geneticist to work within the Research and Development office.

If you are interested please contact me for further information.

Phone or WhatsApp to: +393356156186

Send your CV to raffaellafinocchiaro@anafi.it.