Predicting methane emissions of individual grazing dairy cows from spectral analyses of their milk samples

Donagh Berry, M. Frizzarin, B. Lahart, M. Kennedy, L. Shalloo, M. Egan, K. Starsmore, S. McParland

Teagasc, Ireland

Donagh.berry@teagasc.ie
Data

- 93,888 individual methane spot measures (>2 minutes)
- 384 lactations from 277 dairy cows

Methane

\[
\begin{align*}
&n \geq 20 \\
&n \geq 10 \\
&0 \\
&n \geq 10 \\
&+6 \\
\end{align*}
\]

AM & PM Milk sample
- Yield & composition
- Spectrum
- Days post calving

AM only
PM only
AM+PM
AM&PM
Approach

Four fold cross-validation

One farm out

Methane = \int (\text{spectrum}, \text{days in milk}, \text{yield}, \text{fat\%}, \text{protein \%})

Partial least squares or neural networks
Results

• $\mu = 323.4$ g/d
• $\sigma = 75.2$ g/d
• Average of 30 spot measures to ±6 days
 • 111 minutes
• Repeatability = 28%

• Little difference
 • AM v PM, neural networks v partial least squares
• Flanking 6 days > previous 6 days > subsequent 6 days
• Holstein > Jersey > Crossbreds
Results

<table>
<thead>
<tr>
<th>Experiment</th>
<th>RMSE (g/d)</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>34.39</td>
<td>0.69</td>
</tr>
<tr>
<td>2</td>
<td>37.04</td>
<td>0.58</td>
</tr>
<tr>
<td>3</td>
<td>36.76</td>
<td>0.71</td>
</tr>
<tr>
<td>4</td>
<td>37.44</td>
<td>0.55</td>
</tr>
<tr>
<td>5</td>
<td>41.10</td>
<td>0.65</td>
</tr>
<tr>
<td>6</td>
<td>37.26</td>
<td>0.68</td>
</tr>
<tr>
<td>7</td>
<td>40.55</td>
<td>0.62</td>
</tr>
<tr>
<td>8</td>
<td>35.71</td>
<td>0.68</td>
</tr>
</tbody>
</table>

Methane = AM + PM + yield + days post calving
Results

<table>
<thead>
<tr>
<th>Model</th>
<th>No spectra</th>
<th>With spectra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spectra</td>
<td></td>
<td>0.55 (0.07)</td>
</tr>
<tr>
<td>DIM</td>
<td>0.32 (0.13)</td>
<td>0.55 (0.06)</td>
</tr>
<tr>
<td>Yield</td>
<td>0.10 (0.18)</td>
<td>0.64 (0.05)</td>
</tr>
<tr>
<td>Composition</td>
<td>0.32 (0.13)</td>
<td>0.57 (0.06)</td>
</tr>
<tr>
<td>DIM + yield</td>
<td>0.52 (0.10)</td>
<td>0.64 (0.06)</td>
</tr>
<tr>
<td>DIM + composition</td>
<td>0.41 (0.10)</td>
<td>0.55 (0.06)</td>
</tr>
<tr>
<td>Yield + composition</td>
<td>0.32 (0.07)</td>
<td>0.62 (0.05)</td>
</tr>
<tr>
<td>DIM + yield + composition</td>
<td>0.54 (0.09)</td>
<td>0.64 (0.05)</td>
</tr>
</tbody>
</table>
Conclusions

• OK predictions of methane from milk samples
 • Good enough???
 • Needs more validation

• Add to the pipeline of predictions from milk samples

• What to do with the results?