





### Milk MIR spectra to estimate individual CH<sub>4</sub> emissions : Strengths and limitations of a scalable model

Vanlierde A., Dehareng F., Soyeurt H. & Gengler N.

23 May 2023 Feed and Gas Working group Need of tools to quantify CH<sub>4</sub> emissions in routine

Possibility to perform large scale studies and routine uses to:

- > Monitor  $CH_4$  at  $\neq$  scales : animal, herd, region, country
  - Inventory and follow-up in time (seasons, years, *etc.*)
  - Quantification of mitigation strategies impact
- $\succ$  Reduce CH<sub>4</sub> through breeding









## **Back to basics : Methanogenesis**





## **Back to basics : Methanogenesis**









## Proxy

## Milk FT-MIR spectra as a proxy for enteric CH<sub>4</sub>



Milk samples are collected routinely

They are analysed by MIR spectrometry



Wavenumber (cm-1)

4000

## Milk FT-MIR spectra as a proxy for enteric CH<sub>4</sub>



Wavenumber (cm<sup>-1</sup>)



#### First equation



#### Journal of the Science of Food and Agriculture



## Improving robustness and accuracy of predicted daily methane emissions of dairy cows using milk mid-infrared spectra

Amélie Vanlierde,<sup>a</sup> <sup>©</sup> Frédéric Dehareng,<sup>a\*</sup> Nicolas Gengler,<sup>b</sup> Eric Froidmont,<sup>c</sup> Sinead McParland,<sup>d</sup> Michael Kreuzer,<sup>e</sup> Matthew Bell,<sup>f,†</sup> Peter Lund,<sup>g</sup> Cécile Martin,<sup>h</sup> Björn Kuhla<sup>i</sup> and Hélène Soyeurt<sup>b</sup>



**First equation** 



## **First equation**



| Equation          | N data | N cows | Origin | Pred.<br>variables | R²c  | SEC<br>(g/d) | R²cv | SECV<br>(g/d) |
|-------------------|--------|--------|--------|--------------------|------|--------------|------|---------------|
| First<br>equation | 77     | 11     | BE     | S                  | 0.85 | 69           | 0.72 | 96            |

50 Measured CH<sub>4</sub> (g/kg milk) 0 45 0 Ο 40 Ο 35 Animal (2012), 6:10, pp 1694–1701 © The Animal Consortium 2012 animal Ø 30 corn silage (●) 25 0 Potential use of milk mid-infrared spectra to predict individual 20 grass silage (+) 15 -F. Dehareng<sup>1\*†</sup>, C. Delfosse<sup>1\*</sup>, E. Froidmont<sup>2</sup>, H. Soyeurt<sup>3,4</sup>, C. Martin<sup>5</sup>, N. Gengler<sup>3,4</sup>, A. Vanlierde<sup>1</sup> and P. Dardenne<sup>1</sup> 10 fresh pasture (○) 5 0 10 20 30 40 50 0

Predicted CH<sub>4</sub> (g/kg milk)

doi:10.1017/S1751731112000456

methane emission of dairy cows





#### ! Not only focus on model statistics. Importance to observe consistency of predictions !





**First equation** 

# Inclusion of lactation stage information to reflect changes in the metabolic status of cows











-Spectrum 4

Spectra (S)

# Inclusion of lactation stage information to reflect changes in the metabolic status of cows

x = -1 + 2[(Days In Milk - 5)/(365 - 5)]





- -Spectrum 1
- —Spectrum 2
- —Spectrum 3
- -Spectrum 4

## Inclusion of lactation stage information to reflect changes in the metabolic status of cows



Processed spectral point (n)

Modified Spectra (MS) 

I actation stage dependent coefficients

-Spectrum 1

х

0.4

0.3

0.2

-0.3

-0.4

Absorbance [Log(1/T)]

$$= -1 + 2[(Days In Milk - 5)/(365 - 5)]$$

Inclusion of lactation stage information to reflect changes in the metabolic status of cows









### Increasing the variability of the calibration set → Breeds





|   | Ducad | n data | 0/ of data |        |           | $CH_4 (g/d)$ |  |
|---|-------|--------|------------|--------|-----------|--------------|--|
|   | Breed | n data | % of data  | n cows | % of cows | mean ± SD    |  |
|   | HOL   | 891    | 82         | 222    | 74        | 415 ± 107    |  |
|   | JER   | 67     | 6          | 10     | 3         | 342 ± 42     |  |
| _ | BSW   | 78     | 7          | 39     | 13        | 458 ± 69     |  |
|   | RED   | 21     | 2          | 8      | 3         | 427 ± 74     |  |
|   | X     | 32     | 3          | 20     | 7         | 391 ± 67     |  |

# Increasing the variability of the calibration set $\rightarrow$ Lactation stage





#### Increasing the variability of the calibration set → FT-MIR spectra





#### Increasing the variability of the calibration set → FT-MIR spectra





## **Equation developped**



## **Practical applications : Large scale studies**



Walloon milk recording Jan. 2016  $\rightarrow$  Dec. 2017

5 – 365 DIM

GH < 5 Holstein cows in RW  $\rightarrow$  n = 538,510



Month



**First equation** 



#### **Robustness** 1.52 Consideration of 2 Inclusion of additional zootechnical lactation stage accuracy information information Increase the variability What if CH<sub>4</sub> is included in the measured with calibration set gold-standard technique?

# Main strenghts and limitations of milk MIR spectra as a proxy for CH<sub>4</sub> emissions?

#### <u>Strenghts</u>

Milk sampling and MIR analyses already implemented in routine

#### > Fast

- Cost effective
- Error of prediction known

#### ➤ Scalable

➤ Maybe closer to physiology (H  $\rightarrow$  CH<sub>4</sub>)

#### **Limitations**

- Specific variability need to be included to avoid extrapolation (GH spectra, diet, breed, THI conditions, etc.)
- Effect of some diet additives on CH<sub>4</sub> emissions can not be considered
- > Need standardized milk MIR spectra
- Only for lactating dairy cows

## **Getting access to the model?**

### 2 Options

#### a) Research collaboration

Provide reference data (CH<sub>4</sub> + Milk MIR spectra)

- from a country not yet included
- from cows receiving an innovative diet/additive
- from a breed/lactation stage... not covered
- *etc.*

Win/Win situation

Reference data never shared, only updated coefficients of the equation



#### b) European milk recording



#### STANDARDIZATION OF MIR

Standardization of MIR spectral data at the source Across milk labs and brands of FT-MIR spectrometers Service delivering for members or customers

#### PREDICTION SERVICE

New management indicators and decision making tools



**~** 

#### TRANSNATIONAL DATABASE

with dairy cows' data. Including MIR spectra

SUPPORT BETWEEN MEMBERS

LEVELLING UPWARDS

#### www.milkrecording.eu

## In the future?

- $\succ$  Keep improving the model respiration chamber & SF<sub>6</sub> tracer gas methods
- Same collaborative approach with greenfeed data on its way challenge about  $CH_4$  values



J. Dairy Sci. 105:9271–9285 https://doi.org/10.3168/jds.2022-21890 © 2022, The Authors. Published by Elsevier Inc. and Fass Inc. on behalf of the American Dairy Science Association<sup>®</sup>. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Methodological guidelines: Cow milk mid-infrared spectra to predict reference enteric methane data collected by an automated head-chamber system

M. Coppa,<sup>1</sup> A. Vanlierde,<sup>2</sup> M. Bouchon,<sup>3</sup> J. Jurquet,<sup>4</sup> M. Musati,<sup>5,6</sup> F. Dehareng,<sup>2</sup> and C. Martin<sup>5</sup>\* M.

- > Merging Greenfeed system data with respiration chamber and SF<sub>6</sub> tracer gas ?
- Considering other informative values as predictors ?
- $\blacktriangleright$  Extension towards genomics ( $\leftarrow$  new opportunities for collaborations)

## Take home messages

- $\circ$  Prediction of CH<sub>4</sub> emissions from milk MIR spectra : **indirect** and **scalable** model.
- Importance to observe model **statistics** AND **consistency** of predictions.
- **Collaborations** are the key to join efforts and obtain robust models.
- Need to **standardise** spectra to merge reference datasets and to apply the model.
- Limitations are known (SE, additives with late impact on methanogenesis process,...).
- $\circ$  To be validated: MIR predictions closer to **physiological CH**<sub>4</sub> (H generation potential).
- You can use it with different purposes if you are a **nutritionist**, a **geneticist**, etc.

Keeping that in mind to ensure a wise use, milk MIR spectra is a very effective proxy to predict indvidual  $CH_4$  emissions from lactating dairy cows.



LIÈGE université
 Gembloux
 Agro-Bio Tech



## Thank you for your attention