Measuring enteric methane in dairy cows in the Netherlands

A.E. van Breukelen, M.N. Aldridge, R.F. Veerkamp, Y. de Haas

anouk.vanbreukelen@wur.nl

Introduction

Anouk van Breukelen

 PhD candidate at Animal Breeding and Genomics group, Wageningen Universiteit & Research (2020-2024)

Projects

Ministerie van Landbouw, Natuur en Voedselkwaliteit

Climate envelope (start 2018)

- Methane measurements (Sniffer and Greenfeeds)
- Genetic parameters, microbiability, N and P efficiency

Climate Smart Cattle Breeding (start 2020)

- Goal to develop breeding values for methane
- Recording in milking robots on 100 farms
- Parameter estimation and developing a selection index

Climate smart cattle breeding

Methods of measuring methane

Sniffer

- Installed nearby milking robot
- Measures concentration (ppm)
- High through #ut #

Cost effective

GreenFeed

(C-lock Inc. Rapid City, SD, US)

- Placed in the barn/ pasture
- Flux method (g/day)
- Medium throughput
- Costly
- Records he solution

Developing a sniffer and lessons learned

17 first generation sniffers

- WD-WUR, Carltech BV, NL
- Prone to calibration drift
- Accuracy limitations
- Susceptible to environment
- Difficult to carry and mount
- Data transfer was constrained

Developing a sniffer and lessons learned

- 90 second generation sniffers
 - Improved housing
 - IP65 for barn conditions
 - Communication integration

- SQL database uploaded to Microsoft Azure
- Higher accuracy (potentially)
 - For future clients Carltech will implement a more stable but more expensive methane sensor
- Still a developing technology

Installation of sniffers

- 60 sniffers currently installed on farm
- Aim to record on 100 farms
- Sniffers will be installed for 2 years
- Recording methane on over 15,000 cows

What we measure

Filtering is essential

Matching methane with cow ID

Using the IDs recorded by the milking robot

• Based on timestamp, and an algorithm to check if the alignment is correct or delayed

Sniffer data March 2023

	N farms	N cows	N records	Min records/cow	Max records/cow	Mean records/cow
Visit mean	54	6,516	604,565	1	271	56
Weekly mean	52	4,664	36,370	1	37	8

Research objectives (CSCB)

- Estimate genetic parameters
- Estimate phenotypic and genetic correlations with cows measured with sniffers and GreenFeed
- Estimate genetic correlations with other breeding goal traits

Material and methods

Number of	GF	Sniffer	Both total	Both recording overlaps
Farms	16	15	6	4
Cows	822	1,800	184	75
Daily records	24,284	170,826		1,786
Weekly records	4,358	30,982		334

Results: Phenotypic variation

Results: Phenotypic variation

Genetic analyses: Methods

Visits corrected for hour of the day, before averaging per day/ week

 $y_i = \mu + Farm_i \cdot \sum_{j=1}^{1} (\sin j\theta 2\pi + \cos j\theta 2\pi)$

Bivariate repeatability animal models in ASRemI 4.2

Fixed effects: 10101010

- Herd x Year x Week
- Breed fraction x Breed
- Days in milk 0001010101001.
- Parity 010101010100101010101

Random effects:

- Additive genetic
- Parity x permanent environmental
- Residual

Results: Parameter estimates weekly

	GF CH ₄	GF CO ₂	Sniffer CH ₄	Sniffer CO ₂
GF CH ₄	0.33 ± 0.04	0.75 ± 0.01	0.37 ± 0.05	0.19 ± 0.06
GF CO ₂	0.65 ± 0.05	0.34 ± 0.05	0.31 ± 0.05	0.24 ± 0.06
Sniffer CH ₄	0.76 ± 0.15	0.72 ± 0.16	0.32 ± 0.02	$0.84 \pm < 0.01$
Sniffer CO ₂	0.41 ± 0.18	0.60 ± 0.17	0.93 ± 0.01	0.32 ± 0.02

Heritabilities are reported on the diagonal, phenotypic correlations above and genetic correlations below the diagonal

Number of records to estimate breeding values

$$r_{cow}^{2} = \frac{n_{rec} * h^{2}}{1 + (n_{rec} - 1) * rep}$$
$$r_{sire}^{2} = \frac{\frac{1}{4}n_{daugh}r_{cow}^{2}}{1 + \frac{1}{4}(ndaugh - 1)r_{cow}^{2}}$$

 For a reliability of 50% for a bull EBV we need 5 records on weekly mean CH₄, measured on 10 different daughters

Current work: random regression model (first results)

Model to estimate the genetic parameters:

$$y_{ijlk} = \mu + HJW_i + Par_j + \sum_{k=0}^{2} \phi(t)_{lk}\beta_k + \sum_{k=0}^{2} \phi(t)_{lk}a_{lk} + \sum_{k=0}^{2} \phi(t)_{lk}pepar_{lk} + e_{ijl}$$

- HYW: Fixed interaction between herd, year, and week of the measurement
- Par: fixed effect for parity
- Beta: Fixed regression on days in milk
- Random regressions on the additive genetic (a) and permanent environmental effect within parity (pepar)

Current work: random regression model (first results)

Heritability

70 85 100 125 150 175 200 225 250 275 300 306

Days in milk

Conclusions

- Methane measured by either device is heritable
- The moderate genetic correlation suggests, the two devices rank cows similarly from low to high emitting and that selection for lower CH₄ with either method will have the same directional effect
- Breeding values can be estimated with a moderate to high reliability

X

Ministerie van Landbouw, Natuur en Voedselkwaliteit

Publications

https://www.sciencedirect.com/science/ article/pii/S0022030222001722

https://www.sciencedirect.com/science/ article/pii/S0022030223001807

