

Development of a portable MIR instrument for in-farm milk analysis

what are the needs and expectations of the dairy sector?

C. Grelet, M. Joissains, Q. Arnould, D. Delhotte, F. Dehareng, V. Baeten, A. Giusti, P. Demosthenous, Bromedir Consortium, J.A. Fernandez Pierna

HYDROGEN QUALITY

Trace contamination detection of hydrogen during production & supply to end-customers requires continuous hydrogen measurement a) in feed gas, b) after pre-enrichment, and c) in product gas after electrochemical compression-separation for dynamic process control – as pipeline compositions and supply/demand situations may vary significantly.

SUSTAINABLE FARMING

Focus will be on cows farming. BROMEDIR will be used for onfarm, fast analysis of individual cow milk samples focusing on the nutritional value of milk (measurement of total fat total protein, n onvdrat scontent) and cow's her the raits (fatty acids profiling has can indicate ical imbalance.

FUEL QUALITY

Focus will be on both monitoring of jet fuel quality and control of biodiesel percentage present in car & marine diesel. Contamination with fatty acid methyl ester (FAME) will be tested for jet fuel and for the second part, biodiesel (FAME) content in car (petroleum) & marine diesel will be tested.

Herd monitoring - PLF

BRCMEDIR CRA-W

- Precision livestock farming
- High frequency of measurement (daily)
- Individual cow level
- Powerful to detect deviations
 - Heat
 - Unknown disturbances (mastitis, heat stress...)
- BUT few phenotypes
 - Milk yield
 - Accelerometers
 - Milk Conductivity

Herd monitoring - MIR

- High number of phenotypes
 - Milk quality (fatty acids, minerals, coegulation properties...)
 - Energy deficit
 - Ketone bodies
 - Mastitis
 - Fertility (ability to conceive...)
 - Environmental footprint (CH4, nitrogen efficiency...)
 - ...
- BUT low frequency, every 4 to 6 weeks with DHI

MIR on farm?

- Objective of Bromedir: develop a miniaturized MIR spectrometer for in-farm milk analysis
 - Would enable to predict high number of phenotypes at a high frequency (daily)
 - Extremely powerful tool for rapid and specific detection of troubles

- MIR not existing yet
- NIR systems in farms \rightarrow less precision and phenotypes compared to MIR

What are the needs and expectations of dairy sector?

- Which type of instrument?
- For which users?
- And which use?

Survey

- Performed from 15th February to 15th march
- 4 languages (English, French, German and Greek)
- Addressed to 4 stakeholders groups:
 - Dairy farmers •
 - Advisers (milk recording organizations, vets, nutritionists)
 - Livestock researchers
 - Milk industry (factories processing milk products)
- Reached by mails and social media (facebook, agricultural newspapers...)

#enquête 😘 Vous recherchez un outil de gestion de votre troupeau ou de votre

Clément Grelet • You

Recherche avis des éleveurs laitiers !

2 692 followers

process industriels ?

Responsable projets et expérimentations

petite enquête au sujet des futures analyses de lait à la ferme

CRA-W Centre wallon de Recherches agronomiques

Futures analyse	s de lait à la ferme : reche	rche avis des acteurs	du secteur laitier
cra.wallonie.be • 1	min read		
🕙 Maxime FONTEN	IIT and 6 others		1 comment
🛆 Like	Comment	ငံ Repost	Send
1 506 impress	ions		View analytics

+ Follow

Who responded?

Farmers Do you consider yourself as a : • 75 persons • Belgium and France Holstein cows 50 to 260 cows Dairy industry I to 5 peoples working • Belgium, Austria, Cyprus • 40% with AMS • >200 persons 6 10 24 35 Farm advisers Researchers • 7 countries (Europe + USA) I4 countries (Europe + Canada, Australia) • DHI, vets, feed industry and and China) dairy industry • 29% with AMS • Breeding, physiology, nutrition, milk analysis, infrared, modelling ■ 1. Farmer ■ 2. Farm adviser ■ 3. Researcher ■ 4. Dairy industry

Information already accessible on milk quality?

- High access rate to milk quality (83% to 100%)
- Individual and/or tank milk
- Main traits: Fat, proteins, urea, conductivity, SCC (fatty acids also)

Do you routinely use the information?

Measure of milk quality

Use for milk quality
Use for farm management
Use for process management

Information already accessible on cow status?

- High access rate to cow status information (71% to 80%)
 - Mastitis
 - Heat detection
 - Rumination
 - Feed efficiency
 - Energy deficit/Ketosis

• Interest from the stakeholders (on a scale from 0 to 10) : large differences between groups

Do you have an interest for a portable MIR instrument?

• Interest regarding the automation of system ...

Manual sampling + manual analysis

Industry

• Interest regarding the automation of system ...

Do you have an interest for a system with ...

• Interest regarding the automation of system ...

Extremely high interest
High interest

- Limited interest
- Low interest
- What should be the frequency of analysis?

Do you have an interest for a system with ...

• Interest regarding the type of system ...

Automated sampling + automated analysis

Industry

Manual sampling + Automated sampling manual analysis + automated analysis

- Which phenotypes?
- Rate of interested (%) among stakeholders (only +50% shown)

Phenotypes
Milk main components (fat, protein, lactose)
Mastitis detection
Acidosis detection
Feed efficiency
Negative energy balance detection
Ketosis detection
Cyclicity detection (fertility)
Pregnancy detection (fertility)
Milk nutritional quality (fatty acids, minerals)
Lameness detection
Parasites detection
Milk ability to be processed into cheese, butter, yogurt
Information on cow status: environmental footprint

- Which phenotypes?
- Rate of interested (%) among stakeholders (only +50% shown)

Phenotypes	Farmers
Milk main components (fat, protein, lactose)	90%
Mastitis detection	80%
Acidosis detection	60%
Feed efficiency	50%
Negative energy balance detection	
Ketosis detection	
Cyclicity detection (fertility)	
Pregnancy detection (fertility)	
Milk nutritional quality (fatty acids, minerals)	
Lameness detection	
Parasites detection	
Milk ability to be processed into cheese, butter, yogurt	
Information on cow status: environmental footprint	

- Which phenotypes?
- Rate of interested (%) among stakeholders (only +50% shown)

Phenotypes	Farmers	Advisers
Milk main components (fat, protein, lactose)	90%	58%
Mastitis detection	80%	83%
Acidosis detection	60%	50%
Feed efficiency	50%	63%
Negative energy balance detection		88%
Ketosis detection		71%
Cyclicity detection (fertility)		67%
Pregnancy detection (fertility)		63%
Milk nutritional quality (fatty acids, minerals)		63%
Lameness detection		50%
Parasites detection		
Milk ability to be processed into cheese, butter, yogurt		
Information on cow status: environmental footprint		

- Which phenotypes?
- Rate of interested (%) among stakeholders (only +50% shown)

Phenotypes	Farmers	Advisers	Researchers
Milk main components (fat, protein, lactose)	90%	58%	74%
Mastitis detection	80%	83%	71%
Acidosis detection	60%	50%	63%
Feed efficiency	50%	63%	63%
Negative energy balance detection		88%	63%
Ketosis detection		71%	66%
Cyclicity detection (fertility)		67%	66%
Pregnancy detection (fertility)		63%	66%
Milk nutritional quality (fatty acids, minerals)		63%	57%
Lameness detection		50%	60%
Parasites detection			
Milk ability to be processed into cheese, butter, yogurt			
Information on cow status: environmental footprint			

- Which phenotypes?
- Rate of interested (%) among stakeholders (only +50% shown)

Phenotypes	Farmers	Advisers	Researchers	Industry
Milk main components (fat, protein, lactose)	90%	58%	74%	100%
Mastitis detection	80%	83%	71%	
Acidosis detection	60%	50%	63%	
Feed efficiency	50%	63%	63%	
Negative energy balance detection		88%	63%	
Ketosis detection		71%	66%	
Cyclicity detection (fertility)		67%	66%	
Pregnancy detection (fertility)		63%	66%	
Milk nutritional quality (fatty acids, minerals)		63%	57%	50%
Lameness detection		50%	60%	
Parasites detection				
Milk ability to be processed into cheese, butter, yogurt				67%
Information on cow status: environmental footprint				50%

• What are the important technical aspects? (on a scale from 0 to 10)

	Farmers	Advisers	Researchers	Industry
Easy to use information	8.9	8.6	8.6	8
Minimum maintenance requirements	8.7	8.3	7.4	7
Robustness to field conditions (farm/industry).	8.5	8.5	8.8	8.7
Accuracy of the measure (to reach ICAR thresholds).	8.2	8.3	8.6	8.8
Easy-to-use instrument.	8.2	8.8	8.2	7.8
Cost per analysis	7.8	8.3	7.7	6.8
Portability		7.9	6.7	7

• What are the important technical aspects? (on a scale from 0 to 10)

	Farmers	Advisers	Researchers	Industry
Easy to use information	8.9	8.6	8.6	8
Minimum maintenance requirements	8.7	8.3	7.4	7
Robustness to field conditions (farm/industry).	8.5	8.5	8.8	8.7
Accuracy of the measure (to reach ICAR thresholds).	8.2	8.3	8.6	8.8
Easy-to-use instrument.	8.2	8.8	8.2	7.8
Cost per analysis	7.8	8.3	7.7	6.8
Portability		7.9	6.7	7

• Could you rank your priorities (1 to 11)

	Researchers
Good and easy washing procedure	7.37
Possibility to calibrate	7.34
Transferability of existing MIR models	7.25
Correction of drift in time	6.87
Homogenization of milk	6.87
Analysis at 40°C	6.53
Atmospheric compensation (CO2, humidity, temperature)	6.18
Possibility to export spectra	6
Possibility to import models	4.53
Possibility to visualize spectra	3.9
Possibility to name spectra	3.12

• Is the proposed range 1100-3000cm-1 usable?

• Should the instrument be in transmission or reflectance (ATR)?

Sample IR Detector source 25% 54% 21% Sample IR Detector source ATR crystal Transmission Reflectance Other...

Transmission (54%)

- will give better results
- in line with benchtop instruments (transferability of models)

Reflectance (ATR) (21%)

- is easier/more robust
- sample do not need to passes in the cuvette (few microns) → no bypass?

How to integrate these information?

- Which audience to target?
- How should the system be conceived?
 - Portable at-line
 - In-line automated instrument
- Transmission or reflectance?
- To consider
 - Information ease of use
 - Washing process

Next steps

- To conceive the instrument (prototypes)
- To test the instrument
 - In lab
 - In real barn conditions

- Accuracy/repeatability/reproductibility...
- Robustness to field conditions
- Ease of use
- Transferability of existing models

Thank You

For more information, please contact:

Email: c.grelet@cra.wallonie.be

Website: https://bromedir.eu/

Université Gustave Eiffel

