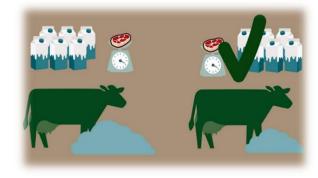


Prediction of body condition in Jersey dairy cattle from 3D-images using Machine Learning techniques

R.B. Stephansen, C.I.V. Manzanilla-Pech, G. Gebreyesus, G. Sahana, J. Lassen

CENTER FOR QUANTITATIVE GENETICS AND GENOMICS

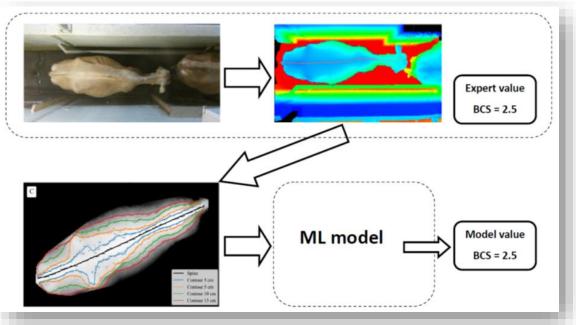
Presentation outline



Why measure body condition?

1. Welfare indicator

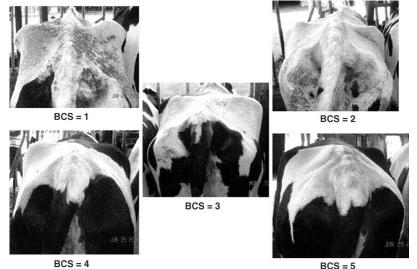
- High **management** level of body condition gives
 - More functional cows (fertility, health, etc.)
 - Higher production
- 2. Important for Metabolic Efficiency
 - Gives ability to model changes in energy
 - Distinguish between fat & protein



Aim of this project

Establish a reliable prediction of body condition using 3D-images and

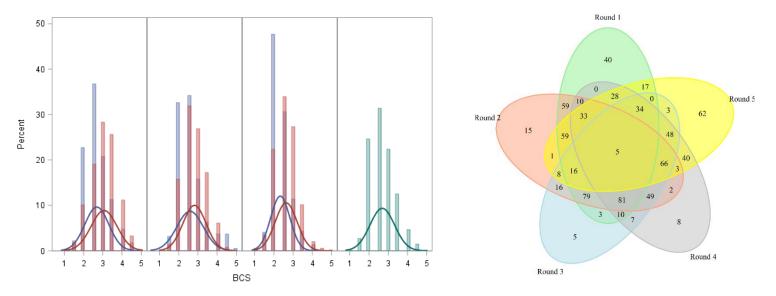
machine learning techniques in Danish Jersey cows on commercial farms.

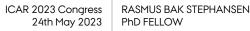


Trait definition

Body condition score (BCS)

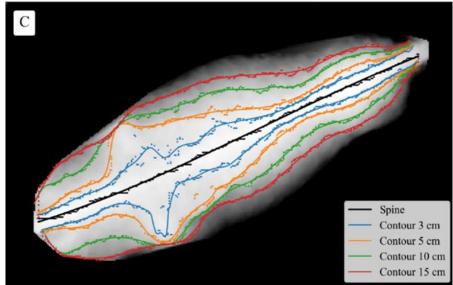
- Typically scored on a 1 to 5 scale with 0.25-unit
- SEGES classifiers scored the cows with 0.5-unit differences


Ferguson et al., (2006)



Paper 3 – Data collection

- •3 Jersey herds had **all cows** (808) scored for **BCS**
 - Scored from December 2021 to August 2022 (2,253 records)
 - VENN diagram for number of Jersey cows per round



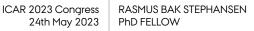
Features for prediction

•Features used from the Cattle Feed InTake system (VikingGenetics)

•Mean feature calculated per round of classification

Algorithms used

Machine Learning algorithms


- •H₂O *AutoML* (R-studio)
 - Tested both classification and regression

Models tested

- Deep Learning (DL)
 - Complex model based on neural networks
- Partial Least Square (PLS)
 - Simpler model using dimension reduction

Defining training and validation

•We grouped training and validation data as

- Random 7:3 split, clustered by cows
 - Replicated 10 times

Evaluation parameters

- Evaluation parameters
 - Accuracy (proportion of correctly assigned phenotypes) higher is better
 - **F1-Score** (Combined measure of precision and recall) higher is better
 - **R²** (Coefficient of determination) **higher is better**
 - **RMSE** (root of mean squared error) **lower is better**
- Evaluation parameters assessed on
- Exact phenotype
- 0.5-unit deviation (DV)

Results – DL Classification model

•DeepLearning results

Accuracy

- Exact: 48.1 (45.9-50.7)
- 0.5-unit DV: 93.5 (92.7-95.3)
- Rodriguez Alvarez et al. (2019)
 - Exact: **41**
 - 0.5-unit DV: **97**
- Shi et al., (2023)
 - Exact: **49**
 - 0.5-unit DV: **96**

	F1-Score		
BCS	Exact	0.5-unit DEV	
1.5	3	39	
2.0	59	98	
2.5	55	96	
3.0	36	94	
3.5	42	85	
4.0	9	81	
4.5	4	13	
Weighted average	46	91	

Results – Regression models

• Accuracy based on rounded predicted phenotype from regression models

BCS	PLS		DL		
	Exact	0.5 range	Exact	0.5 range	
Accuracy	51.2	96.1	52.0	95.5	
R ²	0.67		0.66		
RMSE	0.31		0.29		

Take-home messages

- •Accuracy from **tested** models show
 - Similar validation accuracies as Holstein studies

- •PLS achieve similar validation results as DL
 - Reduce computational requirements

- It is **feasible** to predict **BCS** in **Jersey** from 3D-images
 - Next step is to build a model for Holstein

ICAR 2023 Congress 24th May 2023

RASMUS BAK STEPHANSEN PhD FELLOW

Acknowledgements

CENTER FOR QUANTITATIVE GENETICS AND GENOMICS

Thank you for listening