

Recording grazing time of dairy cows

Allain, C., Danilo, S., Raynal, J., Beck. C, Delagarde, R., Brocard, V.

ICAR 2016

Context

An increase in the farm size and productivity, a change in the farming systems (AMS doubled since 2010)... a decrease in the grazing

Average dairy herd size in France

Grazing positive effects

Cow is...an herbivore

<u>And</u>

- Economic advantages
- Animal health and welfare (lameness,...)
- Milk quality
- Consumers and society vision of livestock farming
- Valorisation of unusable surfaces for other productions (crops)

AutoGrassMilk Project

WP1

Optimum feeding strategies

WP2

Optimize the integration using new technologies

WP3

Increase the sustainability

WP4

Economic assessment

Innovative and sustainable systems combining automatic milking and precision grazing

Validation of the Lifecorder + sensor

Lifecorder + sensors

- Lifecorder + = Uniaxial accelerometer
- Combination with in/out antennas

 \blacktriangleright Algorithm (R. Delagarde, INRA): Signal \rightarrow binary information (eating yes/no): eating time, nb of meals

Tested in 2 experimental farms

- ▶25 cows equipped in Derval Farm
- ▶14 cows equipped in Trévarez Farm

Observations as reference

- Scanning every 10 min
- Registered activities : eating, ruminating, standing/lying, walking

Lifecorder + vs. observations

Reliable tool to measure grazing time

- Relative Prediction Error: 17%
- ► Delagarde and Lamberton (2015): R²=0.98 and RPE = 7%
- Possible tool to monitor eating behaviour and to manage grazing
- Other marketed tools available

Use of the grazing time to assess grazing behaviour in an AMS farm

Derval experimental farm

Herd management

- ➤ Delaval VMS, 2008
- ➤ Saturated AMS, 2,000 kg/day
- ➤ 72 Holstein, 9,500 kg/cow/year

Feeding strategy

- ➤ Simplified rotational grazing system
- ➤ Supplementation: maize silage

Daily grazing behaviour in Derval

- >23 cows equipped from March to June 2015
- ► A PCA + HAC were achieved to make groups of individuals with common features

Daily grazing behaviour in Derval Farm

Derval farm (n=1,323)						
Groups	Herd ave. (SD)	Α	В	С	D	P ⁽¹⁾
Nb of animals	23	6	4	8	5	
Grazing Time (min)	320 (102)	360 a	365 ª	294 ^{ab}	274 ^b	<0.001
Nb of meals	5.3 (1.8)	5.6 ^a	5.7 a	5.2 b	4.8 b	0.0064
Meals Duration (min)	64 (23)	69 a	69 a	60 b	59 b	0.0003
Access Time (min)	775 (237)	817 a	776 a	801 a	686 b	0,001
Grazing Time/Access Time (%)	43 (14)	44 ^a	47 ^a	37 ^b	40 b	<0.001
Exit time	1h20	0h45 ^a	2h00 ^b	0h50 ^a	3h00 ^b	<0.001
Yield (kg/cow/day)	27.1	30.0 a	21.2 b	29.4 ab	24.8 ab	0.047
Milking Frequency (milk./day/cow)	1.92	2.03	1.84	1.96	1.77	0.16

- > Huge impact of the herd hierarchy on GT
- Different grazing behaviours and efficiencies

- **▶** Animal effect (breed, parity, yield, etc.)
- Farm system effect (complementation vs. full grass, robot)
- Pasture characteristics (species, grass height and composition)
- Grazing management (strip grazing, rotational, simplified)
- → Difficult to use as an absolute value

Potential use of grazing time

Grazing/herd management

- Improve existing tools (plate meters, grazing software, GPS)?
- ➤ Cow circulation with robots → use the herd hierarchy and grazing efficiency
- > Health issues detection

Certification / welfare assessments

> For the legislator, the consummer and the farmer

Estimation of grass intake in regulated grazing systems (Van Reenen et al. 2016)

- Phenotyping feed intake for selection or herd management
- Phenotyping grazing efficiency?

Figure 1. Relationship between grass intake determined with the n-alkane method and grass intake estimated with the use of regression Model 1.

Summary

- ► Accurate grazing time measurement is possible with accelerometer sensors
- > Hundred thousands of animals are equipped worldwide
- Huge variability of grazing behaviours between animal
- Parameter to be used to
 - Improve grazing management (in addition of existing tools)
 - Reinsure the consummer...and better pay the farmer (ex. in NL)
 - Phenotyping new traits (grass intake, grazing efficiency,...)?

Questions?

