Comparison of records from in-line milk meters and conventional herd testing for management and genetic evaluation of dairy cows

G.P.S. Anderson, I.L. Zhang, A.M. Winkelman & B.L. Harris Livestock Improvement Corporation Private Bag 3016, Hamilton 3240 New Zealand

Introduction

- Data from herd testing and animal recording are essential inputs for modern genetic improvement programs for dairy cattle
- Outcomes:
 - To identify genetically superior animals for breeding
 - To identify low-value cows for culling
 - Input for management decisions

Introduction

- Herd testing is usually undertaken by herd testing organisations
- Herd testing samples are obtained at each visit using ICAR, or nationally certified, herd testing devices
- The fat and protein content is measured from a subsample using FTIR laboratory analysis

Objectives

- Compare the accuracy of estimating the genetic and productive merit of cows based on either:
 - high-frequency, lower-precision ILMM measurements
 - low-frequency, high-precision conventional herd testing measurements.

ILMM Precision

Seasonal-calving farm in New Zealand

350 crossbred Holstein Friesian

Jersey cows

 30-bail rotary system with every bail equipped with a YieldSense® ILMM

ILMM Precision

- Data collected from the ILMMs from September 2014 until May 2015
- We undertook 64 conventional herd tests
 - Two blocks of 20 consecutive tests
 - peak of lactation
 - 3rd quarter of lactation
- The data from the ILMM meters were calibrated to the five-day bulk tank averages

ILMM Precision

- Measurements outside upper and lower limits from the ICAR guidelines were removed
- Outliers were identified within each cow's lactation curve via a spline analysis
- Linear mixed models were used to calculate the accuracy of the ILMM measurements relative to the herd test measurements
 - Accounted for the fixed effects of age, days in milk and breed and the random effects for cow and error

Results Accuracy and Bias

Simulation

 The simulation was based on 100 randomly selected herds from the Waikato region of New Zealand

 The herd testing scenarios consisted of 1, 2, 4, 7, or 10 evenly-spaced herd tests across the season

Results Simulation

Results Simulation: Breeding Values

■ Medium

Low

- High

Results Simulation: Production Values

■ Medium

Low

- High

Discussion

- The use of records from an ILMM that have little or low levels of cow-specific variance can match or outperform the accuracy of 4 conventional herd tests for BV and PV estimation
- As the level of cow-specific variance increases, the accuracy of the ILMM, relative to herd testing, decreases.
- The (co)variance structure of the cow-specific variance does have a major impact on the results

Discussion

- The output from ILMMs must undergo a series of processes such as
 - calibration
 outlier detection
 meter bias removal
- These processes are dependent on data from the entire milking platform, and may require repeated measurements on individual cows.
- Given the evidence of cow-specific bias from the ILMM
 - Certification process will likely require tests of bias across different cows and breeds, range of milk compositions and time.

Conclusions

- The nature of the data collected from ILMMs differs considerably from that collected by conventional herd test meters
- Certification procedures will also need to change

Questions?

