Comparison of records from in-line milk meters and conventional herd testing for management and genetic evaluation of dairy cows

G.P.S. Anderson, I.L. Zhang, A.M. Winkelman & B.L. Harris
Livestock Improvement Corporation
Private Bag 3016, Hamilton 3240
New Zealand
Introduction

• Data from herd testing and animal recording are essential inputs for modern genetic improvement programs for dairy cattle

• Outcomes:
 • To identify genetically superior animals for breeding
 • To identify low-value cows for culling
 • Input for management decisions
Introduction

• Herd testing is usually undertaken by herd testing organisations

• Herd testing samples are obtained at each visit using ICAR, or nationally certified, herd testing devices

• The fat and protein content is measured from a subsample using FTIR laboratory analysis
Introduction

- It has become feasible to buy in-line milk meters (ILMMs) that can be installed at each milking bail within the milking parlour.
- The ILMMs can provide estimates of daily milk volume as well as fat and protein content for each cow.
- There has been little quantification of the precision of the data from ILMMs relative to conventional herd testing.
Objectives

• Compare the accuracy of estimating the genetic and productive merit of cows based on either:

 • high-frequency, lower-precision ILMM measurements

 • low-frequency, high-precision conventional herd testing measurements.
ILMM Precision

- Data from the LIC Innovation research Farm
- Seasonal-calving farm in New Zealand
- 350 crossbred Holstein Friesian–Jersey cows
- 30-bail rotary system with every bail equipped with a YieldSense® ILMM
ILMM Precision

- Data collected from the ILMMs from September 2014 until May 2015
- We undertook 64 conventional herd tests
 - Two blocks of 20 consecutive tests
 - peak of lactation
 - 3rd quarter of lactation
- The data from the ILMM meters were calibrated to the five-day bulk tank averages
ILMM Precision

- Measurements outside upper and lower limits from the ICAR guidelines were removed

- Outliers were identified within each cow’s lactation curve via a spline analysis

- Linear mixed models were used to calculate the accuracy of the ILMM measurements relative to the herd test measurements
 - Accounted for the fixed effects of age, days in milk and breed and the random effects for cow and error
Results

Accuracy and Bias

![Graph showing relative error variance for Milk, Fat, and Protein.]

![Graph showing proportion of cow specific bias for Milk, Fat, and Protein.]

- Milk: Relative error variance
- Fat: Relative error variance
- Protein: Relative error variance

- Milk: Proportion of cow specific bias
- Fat: Proportion of cow specific bias
- Protein: Proportion of cow specific bias
Simulation

• A stochastic simulation study was undertaken to compare dairy cow performance assessed using ILMM and herd testing

• The simulation was based on 100 randomly selected herds from the Waikato region of New Zealand

• The herd testing scenarios consisted of 1, 2, 4, 7, or 10 evenly-spaced herd tests across the season
Results
Simulation

- Production Value
- Breeding Value

Graphs showing the relationship between accuracy and the number of herd tests,
as well as a comparison between different test types (Fat, ILMM, Milk).

High level of cow specific bias and low level of accuracy.
Results
Simulation: Breeding Values

Low Error Variance

High Error Variance

Equivalent number of herd tests

Cow specific bias proportion

Milk Fat Protein

Low Error Variance

High Error Variance
Results
Simulation: Production Values

Low Error Variance

High Error Variance

Equivalent number of herd tests

Cow specific bias proportion

Low Error Variance:
- Milk: Low, Medium, High
- Fat: Low, Medium, High
- Protein: Low, Medium, High

High Error Variance:
- Milk: Low, Medium, High
- Fat: Low, Medium, High
- Protein: Low, Medium, High
Discussion

- The use of records from an ILMM that have little or low levels of cow-specific variance can match or outperform the accuracy of 4 conventional herd tests for BV and PV estimation.

- As the level of cow-specific variance increases, the accuracy of the ILMM, relative to herd testing, decreases.

- The (co)variance structure of the cow-specific variance does have a major impact on the results.
Discussion

The YieldSense® ILMM tested on the Innovation Farm has performance characteristics similar to the medium extra error variance and medium cow-specific variance proportion simulation scenario.

For BV estimation, the ILMM exceeds the accuracy of 10 herd tests for milk volume but equivalent to only 2 herd tests for protein and fat yield.

- For management decisions, such as the culling of low-value cows, full lactation data from the YieldSense® ILMM is equivalent to approximately 4 conventional herd tests.
Discussion

- The output from ILMMs must undergo a series of processes such as:
 - calibration
 - outlier detection
 - meter bias removal

- These processes are dependent on data from the entire milking platform, and may require repeated measurements on individual cows.

- Given the evidence of cow-specific bias from the ILMM:
 - Certification process will likely require tests of bias across different cows and breeds, range of milk compositions and time.
Conclusions

- The adoption of ILMMs by farmers provides challenges to industry organisations such as ICAR and national herd testing certification bodies.
- The nature of the data collected from ILMMs differs considerably from that collected by conventional herd test meters.
- Certification procedures will also need to change.
Questions?