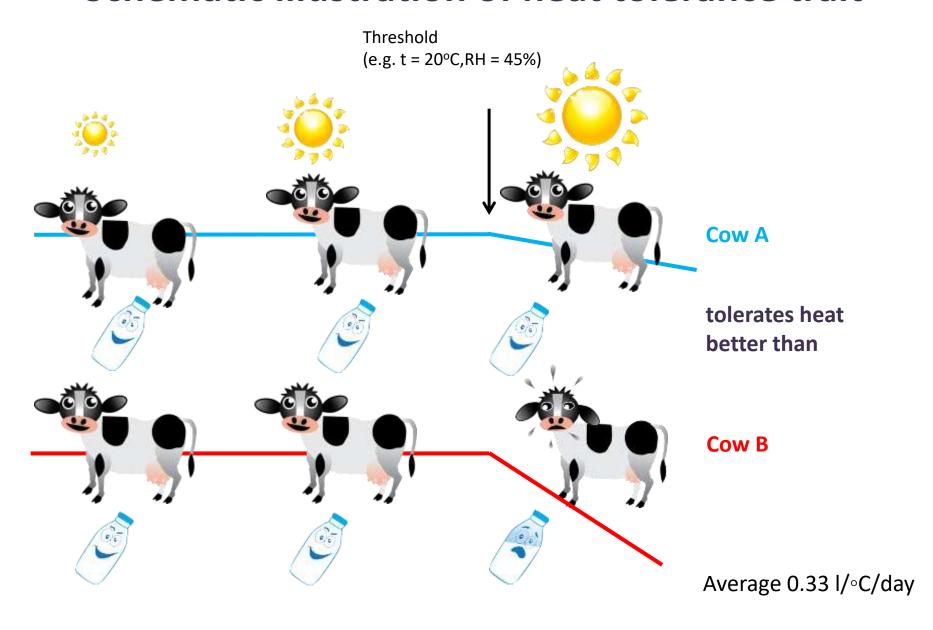
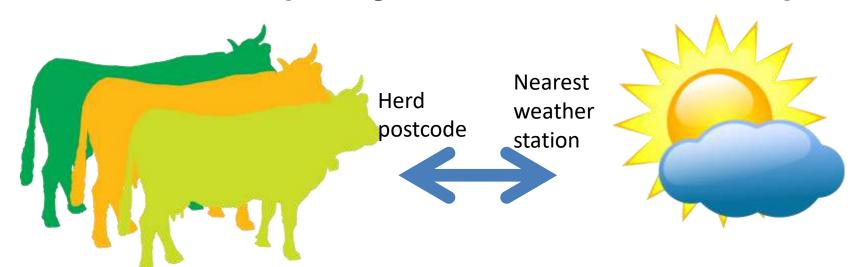


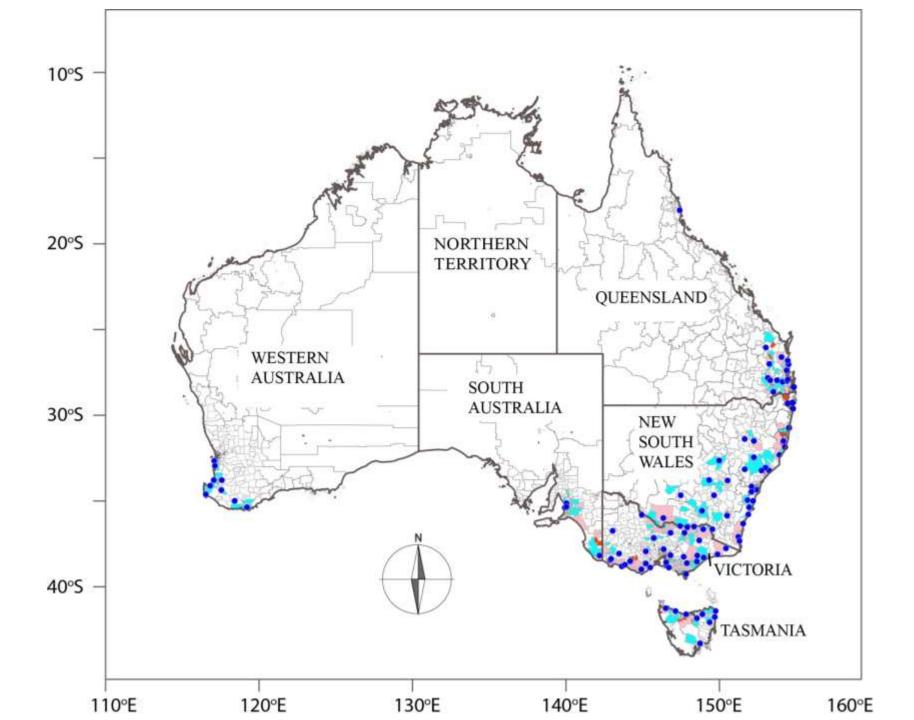
Genomic selection for heat tolerance in Australian dairy cattle


Thuy T.T. Nguyen, Josie Garner, M. Douglas, R.O. Williams, W.J. Wales, L.C. Marett, P.J. Bowman, C. Reich, M. Haile-Mariam, J.E. Pryce & B.J. Hayes


Outline

Schematic illustration of heat tolerance trait

Data (11 years, 2003-2013)



Herd recording

- Milk, fat, protein yields
- -1st -3rd parities
- Holsteins + Jerseys

B. of Meteorology

Temperature-Humidity
 Index (THI) (mean THI of test day + 4 days prior to test day)

Phenotypes and Genotypes

Data	Holsteins	Jerseys
	1st parity	1st parity
Herds	1,762	519
Herd test dates	85,714	26,441
Number of cows	366,835	76,852

#SNP	Holsteins	Jerseys	
800K	1,620 sires	125 sires	Imputed
50K	1,115 sires 2,189 cows	585 sires 1,188 cows	using BEAGLE

Models: using ASREML

Cow slope

• $y_{ijklm} = \mu + HTD_i + YS_j + PAR_k + \sum_{n=1}^{3} A_n X_n + PAR_k \sum_{n=1}^{8} D_n Z_n + STG_l \sum_{n=0}^{1} T_n S_n + \sum_{n=0}^{1} C_{mn} W_n + e_{ijklm}$

Sire slope

Daughter trait deviation (averaged daughter slopes)

one slope

•
$$\mathbf{y} = \mathbf{\mu} + \mathbf{Z}\mathbf{g} + \mathbf{e}$$
, $\mathbf{g} \sim N(0, \mathbf{GRM}\sigma_g^2)$

GBLUP

y = a vector of sire slope and cow slope

Genetic parameters

Trait impacted	h ² of cow slope		
	Holstein	Jersey	
Milk yield	0.22 ± 0.007	0.33 ± 0.018	
Fat yield	0.20 ± 0.007	0.26 ± 0.015	
Protein yield	0.23 ± 0.007	0.27 ± 0.016	

Accuracy of genomic prediction

Breed	Reference	Validation	Trait affected by heat stress	A	ccuracy	1
Holsteins	2,300 sires	435 sires	Milk		0.43	
	2,189 cows		Fat		0.46	
			Protein		0.51	ı
						l
Jerseys	575 sires	135 sires	Milk		0.49	
	1,188 cows		Fat		0.55	
			Protein		0.52	

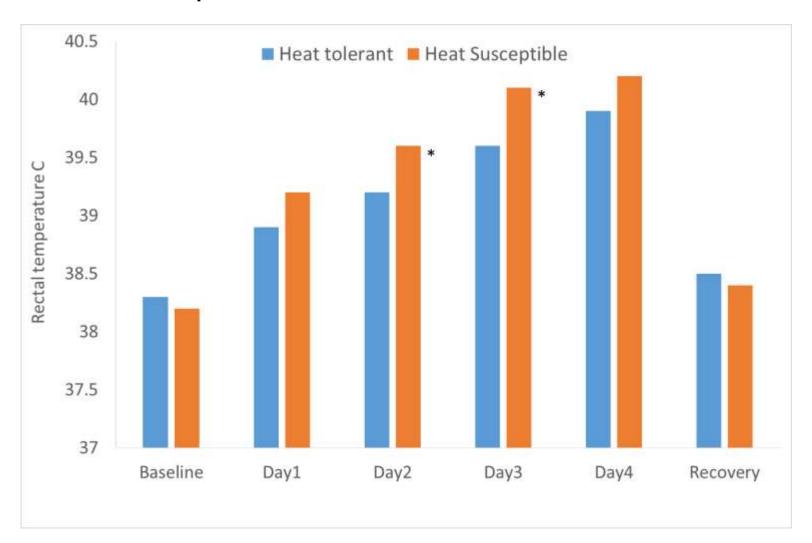
Correlations of heat tolerance GEBV with EBV of fertility

Breed	Heat Tolerance	Fertility
Holsteins	HT Milk	0.39
	HT Fat	0.38
	HT Protein	0.29
Jerseys	HT Milk	0.27
	HT Fat	0.21
	HT Protein	0.15

Validation study

- 400 random heifers
- 24 predicted most heat tolerant, 24 predicted most heat susceptible based on GEBV
- Run through a simulated 4 day heat wave event in respiration chambers
- measure milk production, core temperature

Validation study


Decline in milk production

Validation study

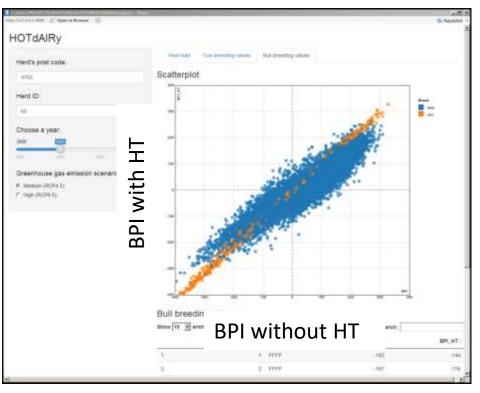
Rectal temperature

IMPLEMENTATION

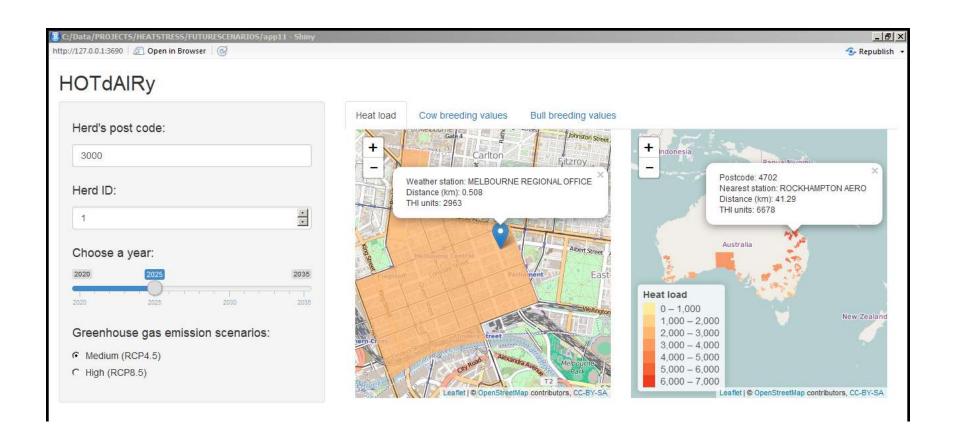
Economic Value

Heat tolerance
$$(\$) = \left(\begin{smallmatrix} EW_m * GEBV_{HTm} \\ EW_f * GEBV_{HTf} \\ EW_p * GEBV_{HTp} \end{smallmatrix}\right) * Heat Load$$

Heat Load varies by herd



Bull breeding values


HOTdAIRy Herd's post code Scatterplot Hartl ID: -Choose a year. 노 **BPI** with F Venus (ROTAT) C NUMBER OF COMMUNICATION Bull breeding without BPI without HT

Queensland

Heat load

Implementation

Location of herds (postcode) Projected future climate data (CSIRO) Marker-only EBV Location-specific economic value (index)

Further work

Effect of Heat on Fertility

Include heat data in routine analyses

Proper GEBV combining EBV + DGV

Include Heat tolerance in BPI

Conclusions

 Genomic selection can be used as a strategy to improve heat tolerance in dairy cattle

- Dairy industry will have validated genomic breeding values to improve heat tolerance
 - Favourable correlation with fertility
- Further work
 - Impact on fertility

Acknowledgements

- The Department of Agriculture of Australia funded the project
- The Australia Dairy Herd Improvement
 Scheme provided production data
 - Test day data
 - BPI: Paul Koh & Gert Nieuwhof
- Dairy Futures CRC
- CSIRO and Bureau of Meteorology –
 Climate Change in Australia
 - Dr. John Clark

DairyBio

PhD research opportunities for 2016 and 2017

Seeking the brightest graduates for world-class bioscience research training.

DairyBio students will have access to:

- A \$30,000 per annum scholarship for 3 years
- Industry-relevant projects
- Exposure to a broad range of science disciplines
- Industry mentoring and networking
- Professional development programs
- International travel opportunities.

Scholarships are limited.

For applications and enquiries please contact:
Kendra Whiteman
Visitor and Student Coordinator
kendra.whiteman@ecodev.vic.gov.au
+61 03 9032 7065

Apply now

Limited number of top-up and full scholarships available.

