

French genomic experience: genomic for all ruminant species

E. Venot¹, D. Boichard¹, A. Legarra¹, S. Fritz³, H. Larroque¹, C. Robert-Granié¹, V. Ducrocq¹, A. Vinet ¹, JM. Astruc², M. Barbat³, A. Baur³, P. Boulesteix², C. Carillier¹, MN. Fouilloux², P. Croiseau¹, A. Gion², C. Hoze³, A. Launay², F. Tortereau¹, R. Lefebvre¹, V. Loywyck², I. Palhière¹, F. Phocas¹, J. Promp², R.Rupp¹, R. Saintilan³, T. Tribout¹, A. Barbat¹, M-P Sanchez¹, S. Mattalia²

French specificities

French specificities

Large number of breeds

Small ruminant breeds

A constructive and efficient French organization

- ► Inter-professional association for genetic improvement of all ruminants
- Common management quality system for all on-field organizations
- Centralized national database
- ► Close relationship between Industry partners and R & D

Win – Win situation

- ► Share of R & D between species
- Example with the share of tools:
 - in 2016 a common pipeline to impute & phase
 Dairy & Beef genomic information from different chips
 - implementation of dairy sheep in the same pipeline in progress

French genomic developments led by Dairy cattle pioneers

IDEAL SITUATION

- large number of tested bulls and large use of AI
- large generation interval
- high cost of progeny testing
- small genetic size populations
- relative small genotyping cost / breeding animal price
- international breeds (Interbull evaluation and possible consortia)

ALL TOOLS TO IMPROVE:

Reference population size & Accuracy (R)

Reference population per breed and reliabilty expected for candidates

Breed	Nb Bulls	Nb Dams	Young candidate REL
HOLSTEIN	33000	•	[0.55-0.70]
BROWN	6000	-	[0.45-0.70]
MONTBELIARDE	2800	31000	[0.55-0.70]
NORMANDE	2400	16000	[0.50-0.65]

Reference population size & Accuracy (R)

Reference population per breed and reliabilty expected for candidates

Breed	Nb Bulls	Nb Dams	Young candidate REL
HOLSTEIN	33000	-	[0.55-0.70]
BROWN	6000	-	[0.45-0.70]
MONTBELIARDE	2800	31000	[0.55-0.70]
NORMANDE	2400	16000	[0.50-0.65]

December 2015

Genomic selection started in 2009 (QTL-GS)
6 times / year with QTL and marker effects estimation

Weekly (without QTL effect estimation)

Reduction of generation interval and more efficient selection on functional traits

Quick adoption of GS by breeders: more balanced selection

Quick adoption of GS by breeders: use of young genomic bulls

Al % in France

Proven bulls

Bulls under progeny testing

Proven bulls with genomic EBV

Young bulls with genomic EBV without daughters

Large increase of genotyping

Larger panel of bulls used

Implementation in other breeds and species?

- Less favorable situation for Beef cattle breeds and Dairy regional breeds
 - same large generation interval
 - genetic population size larger
 - reference population more difficult to generate
 - less Al use for beef
 - phenotype less precise / DYD
 - smaller population size

Multi-breed option?

Multi-breed genomic evaluation for cattle?

HD genotyping of bulls from 18 cattle breeds in selection in France

Unsuccessful => very few common QTL found between breeds

=> no multi-breed genomic evaluation possible

Good basis

to develop genomic selection for several breeds (imputation)

Implementation of Genomic Selection

- in Dairy regional breeds
- in large Beef cattle breeds (BLA, CHA & LIM)

Genomic selection for regional dairy cattle breeds

Reference population per breed and reliabilty expected for candidates

Breed	Nb Bulls	Nb Dams	Young candidate REL
HOLSTEIN	33000	-	[0.55-0.70]
MONTBELIARDE	2800	31000	[0.55-0.70]
NORMANDE	2400	16000	[0.50-0.65]
BROWN	6000	-	[0.45-0.70]
ABONDANCE	350	1900	[0.35-0.55]
TARENTAISE	300	1300	[0.30-0.50]
SIMMENTAL	300	200	[0.20-0.50]
VOSGIENNE	60	1100	[0.20-0.50]

December 2015

Reference population for beef cattle breeds

mal	•			
Maternal effects		Charolais	Limousine	Blonde
	Birth	15 000 / <mark>1800</mark>	6 600 / 2 700	5 600 / 1 200
Direct genetic	Weaning	12 500 / <mark>2400</mark>	5 600 / 2 400	3 900 / 1 000
effect	Carcass	2 400 / 600	1 750 / <mark>400</mark>	720 / <mark>300</mark>
Maternal genetic	Birth	5 200 / 500	3 300 / 200	3 000 / <mark>200</mark>
effect	Weaning	4 500 / 450	2 400 / 500	2 100 / <mark>200</mark>

Different method used for beef cattle with blending of polygenic and genomic results

(VanRaden et al., 2009)

Example of reliability gain for young Charolais calf

EBV	Polygenic reliability	Genomic reliability
Birth	0,30	0,40 (+33%)
Growth Total Merit Index	0,27	0,33 (+22%)
Maternal Total Merit Index	0,25	0,34 (+36%)

Reference population for beef cattle breeds

mal	•			
Maternal effects		Charolais	Limousine	Blonde
	Birth	15 000 / <mark>1800</mark>	6 600 / 2 700	5 600 / 1 200
Direct genetic	Weaning	12 500 / <mark>2400</mark>	5 600 / 2 400	3 900 / 1 000
effect	Carcass	2 400 / 600	1 750 / <mark>400</mark>	720 / <mark>300</mark>
Maternal genetic	Birth	5 200 / <mark>500</mark>	3 300 / <mark>200</mark>	3 000 / <mark>200</mark>
effect	Weaning	4 500 / 450	2 400 / 500	2 100 / <mark>200</mark>

Different method used for beef cattle with blending of polygenic and genomic results

(VanRaden et al., 2009)

Official since end 2015 for BLA, CHA and LIM

2 national runs / year

Weekly computation for new candidates (without re-estimation of marker effects)

What about sheep?

- Less favorable situations for small ruminants
 - high relative cost of genotyping \bigcirc
 - generation interval already short 0
 - fresh semen use for AI in sheep
 - Al demand highly concentrated in time

already familiar with the use of molecular information (scrapie)

Different cases:	Number of milk recorded ewes	Genotyped rams with daughters
Lacaune	156 491	4 716
Manech TR	66 020	1 879
Basco-Béarnaise	21 620	562
Manech TN	9 302	475
Corse	14 028	197

Different research programs and funding to test GS interest and feasibility in Dairy sheep

- Illumina OvineSNP50 chip available since 2009
- Different goals:
 - build up reference population
 - check interest of GS for sheep (with no additional cost)
 - define the best method to apply on sheep data
 - test GS in experimental conditions
 - include new traits
 - foresee potential impact on selection scheme

Results for dairy sheep

- **▶ QTL** detection study: no big QTL found (limited power detection)
- ssGBLUP with phantom group
 - => reliability gain: [0.13 ; 0.20]
- Lacaune experimental study:

- Modeling of different genomic selection pressures on young rams
- => with 1/3 selection pressure, + 15 % genetic gain without extra cost
- => cost of genotyping balanced by reduction of number of rams in AI Center.

Results for dairy sheep

- Lacaune breed:
 - => Studies showed interest of GS for Lacaune breed
 - => GS official in 2015 + end of ram progeny testing
 - => 7 genomic evaluations /year
- Other dairy sheep breeds:
 - reference population smaller
 - test of multi-breed evaluations with LATXA Spanish breed
 - => GS should take place in 2017.

Meat sheep

- limited or no progeny testing and limited AI => No GS planned
- Genotyping first for parentage verification and assignation
- Research to include major gene in genetic evaluation (prolificacy...)

Goats

- Goat chip available in 2010
- ▶ 2 kind of populations for reference population:2 400 females (G + P) and 800 AI bucks
- **▶** Research in progress on:
 - o combination of the 2 breeds (Alpine and Saanen) + international coll.
 - major gene inclusion in genetic evaluation

Goal: GS in 2017

CONCLUSION

- It has been a real genomic revolution these last years
- large impact on selection scheme organization => early use of breeding animals for higher genetic gain on all traits
- ► thanks to the French professional organization structure closely linked to R & D, genomic selection have been adapted to the different specificities of ruminant species and breeds

Genomic evaluation in place in 14 cattle and 1 sheep breeds
In the very next future for 4 sheep and 2 goat breeds

END OF THE STORY? ...

... NO! JUST THE BEGINNING!

- several challenges:
 - Private initiatives
 - Organizational reforms
 - Reference population maintenance
 - Competition on new phenotypic recording
 - Integration of sequence information

REFERENCES

GENOMIC SELECTION

http://en.france-genetique-elevage.org

- www.idele.fr
- www.allice.fr

http://www.jouy.inra.fr/gabi_eng

eric.venot@inra.fr

ormance breeds

France Génétique

French genetics for cattle, sheep and goat industries