

Developments in Beef Genomics.

Challenges & Opportunities.

- · We need to feed more people.
- · **But** in a Climate Efficient Way.
- The beef cow is highly inefficient in terms of kg CO2 output per kg protein.
- <u>But</u> she is a key part of rural infrastructure/eco-system in many countries.
- · Can we breed a more climate efficient cow?
- · What is the potential role of genomics?

HUMAN POPULATION GROWTH CHART

(including projections)

YEAR

200

Challenge 1;
 Feed 9 billion
 people by
 2050.

▼ steve@greenberg-art.com

Protect Climate & Environment.

Beef cows & rural infra-structure.

- Suckler cows & beef cattle are a key part of Irelands rural infra-structure.
 - Small fragmented farms, marginal land etc.
- "In the context of the food versus climate challenge, there is a requirement on countries such as Ireland to become even more efficient in their beef production". Searchinger 2016.

Breed a more efficient beef cow?

De Haas et al. JAM 2016. Methane emission h2 of 0.35 "it is possible to decrease the methane production of a cow by selecting more-efficient cows, and the genetic variation suggests that reductions in the order of 11 to 26% in 10 yr are theoretically possible, and could be even higher in a genomic selection program"

The Irish Beef Data and Genomics Program

- Focused on breeding more profitable, sustainable and carbon efficient cows.
- · Funded from EU Rural Development Program.
 - Under article 28 (Climate + Environment).
 - Co-funded by Irish government (DAFM).
- · €300m total funding 6 years (2015-2020)
 - Farmers paid ~€90/cow/year to complete actions
 - Genotyping, individual animal data, feed, grazing, slurry
- ~2.5m animals will be genotyped during period of scheme.

Genotyping history at ICBF

Characteristics of genotyped animals July'16

breed/breed cross	Count				
Holstein_Friesian	55,258				
Limousin	28,943				
Charolais	26,777				
Limousin_Holstein	25,212				
Limousin_Charolais	23,346				
Charolais_Limousin	21,569				
Limousin_Simmental	19,408				
Angus_Holstein	14,619				
Limousin_Angus	14,246				
Limousin_Hereford	14,235				
Angus	13,908				
Limousin_unknown	13,642				
Holstein	11,627				
Charolais_Simmental	11,617				
Hereford_Holstein	10,715				
Limousin_Belgian Blue	10,385				

Category by sex	Count			
Al sire	4,133			
Males with progeny	45,064			
Male with NO progeny	62,963			
Female with progeny	303,358			
Female with NO progeny	117,572			

Sire error rate = 9.5%
5% in pedigree herds
130,000 sires predicted using
800k Parentage prediction &
discovery panel

2-Step Genomic Evaluation (Mix99)

(Van Raden et al. 2009)

© Irish Cattle Breed

Validation Carcass wt Al sires

· Al sires with first progeny born in 2012 had all their progeny phenotypes omitted

	Validation category				
	Holstein	Charolais			
Current univariate Reliability	>95%	>85%			
N	36	16			
	Correlation with current deregressed univariate ebv				
EBV uni validation	0.750	0.590			
GEBV validation	0.788	0.674			
% of bulls whose sires were in SNP BLUP	100%	56%			

Star Cows Leaving More Profit through Science 5 Star Cows Leaving More Profit

All Suckler Cows

Cow Details			Milk Performance Fertil		Fertilit	lity Performance		Progeny Carcass Performance			
Star Rating	No. of Cows	Replacement Index	% Still Alive	Calf Weaning Weight (kg)	Cow Milk Score (1-5)	Age 1st Calving (months)	Calving Interval (days)	No. of Calvings	Carcass Weight (kg)	Carcass Value	Age at Slaughter (days)
****	33,493	€108	83%	336	4.08	30.2	403	2.69	358	€1,474	697
****	24,317	€76	80%	324	3.87	30.9	407	2.56	356	€1,469	712
***	21,644	€60	79%	319	3.74	31.3	411	2.47	356	€1,470	715
**	20,908	€43	76%	315	3.61	31.5	416	2.40	357	€1,475	721
*	23,911	€12	72%	309	3.36	32.1	423	2.25	357	€1,477	726
Differe 5 Star V's		+€96	11%	27kg	0.72	-1.9 months	-20 days	0.44 calves	0kg	€-2	-29 days

Performance of all suckler females, born in 2011, when ranked on new genomic test proofs

€uro-Star Replacement Index.

Changes in Emissions from Selection on Replacement Index; Key Traits (systems model results)

0.1

Estimated reduction -0.009kg CO₂/kg meat per breeding cow per year for a €1 increase in replacement index

Cheryl Quinton talk
Effects of Genetic Gains in the Irish beef maternal replacement index on greenhouse gas emissions ICAR 2016 Friday 11:30 am

Final Thoughts (Global Perspective).

- Technical challenges re: application of genomics are likely to be greater in beef than other species in the future.
 - <u>Large datasets.</u> High level of sharing of data (i.e., phenotypes, pedigree & genotypes) through orgs such as Interbeef & ABRI-Breedplan.
 - Complex models. Multiple breeds (including cross-breeds) & multiple traits and multiple country/environment models.
- · Encourage you to participate in international evaluations of beef cattle

