

B+LNZ Genetics + ICAR

Agenda

- B+LNZ Genetics Background
- New Zealand Livestock Farming
- B+LNZ Genetics & Beef
- B+LNZ Genetics & Sheep
- Why B+LNZ Genetics + ICAR?

Partnership >

Government + Sheep & Beef Farmers

PURPOSE

Provide the Information Infrastructure for Breeders, Farmers and Industry to make profitable breeding choices

NZ Sheep, Beef & Dairy Numbers

NZ Production Changes

Challenges & Opportunities

- Sheep & Beef Farming System
 - ➤ Beef provide more value than a lawn mower?
 - ➤ Describe & Select Genotypes specifically for NZ?

Challenges & Opportunities

- NZ Dairy Farming No 1 source of NZ Beef
 - Describe specific Genotypes for Dairy-Beef versus traditional Beef System?

NZ Beef Genetic Evaluations > Australia

NZ Genetic Evaluation: Scale

	Within-Flock	Across-Flock
Unique animals	14 million	8.3 million
All flocks	1,135	
Current active flocks [‡]	564	
2015 born (NAI*)	330,649	
eBV's stored	22 billion	416 million

^{*}NAI = new animal indicators

Figures from Aug 2016

[‡]Flocks selling rams

⁻ Base Year 1995

2016: Genetic Engine Upgrade (SIL)

Analysis	Flocks	Animals	ASREMEL	MIX99	
Perendale	57	653,826	33 hours	1½ hours	
Texel	79	491,988	15 hours	0.5 hours	
Coopworth	101	1,612,649	48 hours	4 hours	
Multi-Breed Across flock	456	5,348,205	>1 week •multiple computers •simplified models	26 hours	
NZGE (Weekly)	1,135	14,387,346	Not Possible	31.5 hours	

GE System Upgrade : Pre – 2016

GE System Upgrade: 2016-2017

Genetic Evaluation Data Flow

CURRENT FLOW OF INFORMATION

Sheep Genotyping & Genomics

- SNP Parentage
 - Current 80,000 animals / year & growing
 - € 13.00 Euro
- Genomics
 - 36,170 in training: (50k & HD) & 10,000 p.a. genotyped LD
 - € 40.00 Euro
- Challenge & Opportunities
 - Parentage: < € 5.00 Euro
 - Genomics: < € 15.00 Euro
 - Transition from totally Parentage > Genomics

Sheep Genomic Predictions

<u> </u>	<u>p denomic i redictions</u>						
Trait		Trait	Romney 2016	Coopworth	Perendale	Composite	
Production	Number of Lambs Born	NLB	64%	54%	43%	47%	
	Lamb Weaning Weight	WWT	63%	67%	60%	45%	
	Weaning Weight Maternal	WWTM	47%	46%	41%	40%	
	Live Weight 8 months	LW8	61%	61%	53%	45%	
	Live Weight 12 months	LW12	58%	53%	51%	49%	
	Carcase Weight	CW	58%	60%	46%	43%	
	Ewe Live Weight	EWT	51%	55%	42%	45%	
	Eye Muscle Area	EMAc	57%	59%	49%	39%	
Meat Yield	Fat Yield	FATY	47%	67%	40%	43%	
	Hind Qtr Yield	HQLY	45%	62%	42%	50%	
	Loin Lean Yield	LNLY	44%	62%	42%	49%	
	Shoulder Lean Yield	SHLY	50%	62%	41%	47%	
	Lean Yield	LEANY	47%	62%	42%	49%	
Health	Facial Eczema	GGT21	63%		46%		
	Lamb Dag Score	LDAG	48%	62%		59%	
	Adult Dag Score	ADAG	52%	58%		53%	
	Feacal Egg Count	FEC1	61%	68%	53%	61%	
	Feacal Egg Count	FEC2	52%	50%	41%	44%	
	Adult Ewe Faecal Egg Count	AFEC	46%	45%	34%	39%	
Wool	Fleece Weight 12m	FW12	51%	69%	50%	54%	
	Lamb Fleece Weight	LFW	34%	31%	28%	31%	
	Ewe Fleece Weight	EFW	42%	26%	25%	27%	

BLG Sheep Genomic Pipeline

- 1. HD Genotype key Sires with good phenotypes
- 2. Impute to Sequence
- 3. GWAS: Causative Mutations & QTL
- 4. Add SNPs to Panel to improve accuracy for Genomic Selection

Challenge: ROI on GWAS vs. Phenotypes & Genotypes

Main Areas Sheep Research

Feed Efficacy (RFI)

BCS

Maternal Ewe

Meat Yield & Shape

Meat /Eating Quality

Challenge> Knowledge Transfer (KT)

- 1. KT of R&D outcomes onto Farms
- 2. Assist Seed Stock producers to increase Genetic Merit of flock/herd

B+LNZ Genetics + ICAR > Sheep

Why BLG + ICAR?

- Identifying /implementing key traits of economic value across countries
- Dialog on standardisation / guidelines /codes of practice for the recording of these traits
- The standardisation between countries of nomenclature (IDs, names, units and abbreviations)

Why BLG + ICAR?

- Sharing/access to hard/expensive to record phenotypes (e.g. RFI)
- Opportunities stimulate across country evaluations/progeny tests and exchange of germplasm
- Exchange and use of data including genomic data for gene discovery and evaluations

