# A first approach to predict nitrogen efficiency of individual dairy cows through milk MIR spectra





C. Grelet<sup>1</sup>, E. Froidmont<sup>1</sup>, M. Hostens<sup>2</sup>, L. Foldager<sup>3</sup>, M. Salavati<sup>4</sup>, A. Vanlierde<sup>1</sup>, M.T. Sorensen<sup>3</sup>, K.L. Ingvartsen<sup>3</sup>, M.A. Crowe<sup>5</sup>, C.P. Ferris<sup>6</sup>, GplusE consortium<sup>7</sup>, F. Dehareng<sup>1</sup>

<sup>1</sup> CRA-W, Gembloux, Belgium, <sup>2</sup> Utrecht University, Utrecht, Belgium, <sup>3</sup> Aarhus University, Tjele, Denmark, <sup>4</sup> Roslin Institute, Midlothian, United Kingdom, <sup>5</sup> UCD, Dublin, Ireland, <sup>6</sup> AFBI, Belfast, *Northern Ireland, <sup>7</sup> http://www.gpluse.eu/index.php/project/partners/* 

# **Objective**

Use MIR spectra of milk to predict individual N efficiency

- Prediction of phenotype at large scale for management and genomic studies
- Reduction of feeding costs and environmental impact

### **Methods**



# **Results**

1034 data from 136 cows ( $\approx$  7.6 samplings per cow from calving to DIM 50)

<u>Cross-validation</u>: 10% of data randomly removed

- Estimation of N efficiency with fair accuracy
- Best model obtained with SVM

• But records from a same cow can be in calibration and validation sets

|      | Method                                                                      | X predictors  | R <sup>2</sup> cv | Error<br>(RMSEcv) | Relative error<br>(RMSEcv/mean) |
|------|-----------------------------------------------------------------------------|---------------|-------------------|-------------------|---------------------------------|
|      | PLS                                                                         | MIR           | 0.59              | 6.6               | 18%                             |
|      | PLS                                                                         | MIR+Parity    | 0.62              | 6.4               | 17%                             |
|      | PLS                                                                         | MIR+Parity+MY | 0.72              | 5.5               | 15%                             |
|      | SVM                                                                         | MIR+Parity+MY | 0.74              | 5.3               | 14%                             |
| 80 [ | I                                                                           |               | 1                 | 1                 |                                 |
| 70 - | Fit<br>Fit<br>1:1<br>AfbiHighCc<br>AfbiLowCc<br>AfbiStandard<br>V AuAcidose | SVM model 🖈   |                   | •                 |                                 |
| 60   | ★ AuKetose                                                                  |               |                   |                   |                                 |

#### (recorded twice weekly)

Common sampling protocol in 3 experimental farms 136 Holstein cows in early lactation (calving to DIM 50)

|                                             | # Cows | MY   | Diet 1               | Diet 2              | Diet 3             |
|---------------------------------------------|--------|------|----------------------|---------------------|--------------------|
| Agri-Food and<br>Biosciences Institute (UK) | ) 62   | 31.6 | Standard<br>(50% Cc) | High Cc<br>(70% Cc) | Low Cc<br>(30% Cc) |
| AARHUS UNIVERSITET (DK)                     | 35     | 35.5 | Standard             | High Sugar          | High Starch        |
|                                             | 39     | 30.5 | Standard             |                     |                    |

MIR spectra collected twice weekly

🗾 CRA-W

Spectra standardized into a common format

Merging of spectra with N efficiency data of the same day Modelling by PLS (Partial Least Square - Linear method) or SVM (Support Vector Machine - Nonlinear Method)

### **Conclusions**

Fair estimation of N efficiency when similar diets are included in the model

Preliminary study, results to be validated

Model only valid for beginning of lactation and Holstein

Robustness of models to be improved by adding complementary data



External-cow-validation: 25% of the cows randomly removed

Confirm potential of the method

• But cows with similar diets are in calibration and in validation sets

|   | Method | X predictors  | R <sup>2</sup> cv | Error<br>(RMSEcv) | Relative error<br>(RMSEcv/mean) |
|---|--------|---------------|-------------------|-------------------|---------------------------------|
| _ | SVM    | MIR+Parity+MY | 0.68              | 5.0               | 14%                             |

External-diet-validation: diets removed one by one.

- Fair to inaccurate predictions depending of the diets
- Best models were obtained with SVM

| Diet           | Method | X predictors  | Error<br>(RMSEcv) | Relative error<br>(RMSEcv/mean) |
|----------------|--------|---------------|-------------------|---------------------------------|
| Afbi HighCc    | SVM    | MIR+Parity+MY | 6.67              | 18%                             |
| Afbi LowCc     | SVM    | MIR+Parity+MY | 8.13              | 22%                             |
| Afbi Standard  | SVM    | MIR+Parity+MY | 4.38              | 12%                             |
| Au High Starch | SVM    | MIR+Parity+MY | 6.95              | 19%                             |
| Au High Sugar  | SVM    | MIR+Parity+MY | 7.51              | 20%                             |
| Au Standard    | SVM    | MIR+Parity+MY | 5.96              | 16%                             |
| Ucd Standard   | SVM    | MIR+Parity+MY | 12.58             | 34%                             |
| Average        |        |               | 7.45              | 20%                             |



