S04(T)-OP-5

Global 24-hour calculation trends in classical milk recording systems

Xavier Bourrigan¹, Pavel Bucek², Friedrich Reinhardt³, Kai Kuwan³, Juho Kyntäjä⁴, Danuta Radzio⁵, Yaniv Lavon⁶, Bruce

Dokkebakken⁷, Carlos Trejo⁸, Kevin Haase⁹, Franz Josef Auer¹⁰, Filippo Miglior¹¹, Antonio Martins¹², Julio Carvalheira¹², Richard Cantin¹³, Tone Roalkvam¹⁴, Guðmundur Jóhannesson¹⁵, Nils-Erik Larsson¹⁶, Marta Dianová¹⁷, Filippo Rapaioli¹⁸, Fernando Sotelo¹⁹, Jere High²⁰, David Hambrook²¹, Armand Braun²², Eric Barras²³, Uffe Lauritsen²⁴, Veronique Frappreau²⁵, Sofia Alday²⁶, Claudio Napolis Costa²⁷, José Augusto Horst²⁸, Galina Fedorova²⁹, Olga Kachanova³⁰, René van der Linde³¹, Brian Coughlan³², Gillon Alain³³, Mauro Fioretti³⁴, R L Bhagat³⁵, A B Pande³⁵, Mario Séguin³⁶, Marija Klopcic³⁷, Erna Galvanovska³⁸, Daina Lodina³⁸, Angie Coburn³⁹, - ACHA⁴⁰, Árpád Kenéz⁴¹, María Jesús⁴², Bularca Ioan Raul⁴³, Janette Mathie⁴⁴, Zdenko Ivkic⁴⁵, Jlanbin Li⁴⁶, Aire Pentjärv⁴⁷, Biljana Perisic⁴⁸, Nilesh Nayee⁴⁹, R O Gupta⁴⁹, Steven Sievert⁵⁰, Seamus Gilheany⁵¹, An Pengpeng⁵², Sun Xianzhi⁵², Japie van der Westhuizen⁵³, Volodymyr Tytenko⁵⁴, Augier Gabriel¹, Lecomte Christophe¹, Carlos Lizana⁵⁵, Pavla Rosincinova¹⁷, Robert Fourdraine⁵⁶, László Dégen⁴¹, Samuel Pinto¹², Glorieux Gery³³, Rotar Mircea Catalin⁴³, Dena Snidall⁴⁴

¹France Genetique Elevage, Paris, France

²Czech Moravian Breeders' Corporation, Inc., Hradistko, Czech Republic

³VIT (Vereinigte Informationssysteme Tierhaltung w.V) IT-Solutions for Animal Production, Verden, Germany

⁴Mtech Digital Solutions (ProAgria Group), Vantaa, Finland

⁵Polish Federation of Cattle Breeders and Dairy Farmers, Warsaw, Poland

⁶Israeli Cattle Breeders' Association, -, Israel

⁷Minnesota DHIA, Buffalo, United States

⁸Milk recording consultant, -, Chile

⁹NorthStar Cooperative, Lansing, United States

¹⁰LKV Austria Gemeinnützige GmbH, Wien, Austria

¹¹Ontario Genomics, Toronto, Canada

¹²ANABLE, Aveiro, Portugal

¹³CanWest DHI, -, Canada

¹⁴TINE SA, Oslo, Norway

¹⁵Icelandic Agricultural Advisory Centre, Selfoss, Iceland

¹⁶Växa Sverige, Uppsala, Sweden

- ¹⁷Breeding Services of the Slovak Republic, S. E., Bratislava, Slovakia
- ¹⁸Asociacion Colombiana De Criadores De Ganado Simmental Simbrah Y Sus Cruces Asosimmental Simbrah, Bogota, Colombia
- ¹⁹Instituto Nacional para el Control y el Mejoramiento Lechero, -, Uruguay
- ²⁰Lancaster Dairy Herd Improvement Association, Manheim, United States
- ²¹Royal Jersey Agricultural & Horticultural Society, Royal Jersey, United Kingdom
- ²²CONVIS S.C., Ettelbruck, Luxembourg
- ²³ASR-Switzerland, Zollikofen, Switzerland
- ²⁴RYK, Aarhus, Denmark
- ²⁵IDELE, Paris, France
- ²⁶Spanish Holstein Confederation, Pinto, Spain
- ²⁷Embrapa Dairy Cattle, Juiz de Fora, Brazil
- ²⁸Associação Paranaense de Criadores de Bovinos da Raça Holandesa, Curitiba Paraná, Brazil
- ²⁹Regional IT Centre for Dairy Cattle Breeding in the Leningrad Region, Plinor, Saint-Petersburg, Tyarlevo, Russian Federation
- ³⁰Plinor, Ltd., -, Russian Federation
- 31CRV B.V., Arnhem, Netherlands
- ³²ICBF, -, Ireland
- ³³Association wallonne de l'élevage asbl, Ciney, Belgium
- ³⁴Associazione Italiana Allevatori (A.I.A.), Rome, Italy
- ³⁵BAIF, Development Research Foundation, Uruli Kanchan, India
- ³⁶Valacta, Sainte-Anne-de-Bellevue, Canada
- ³⁷University of Ljubljana, Domzale, Slovenia
- ³⁸Agricultural Data Centre, Riga, Latvia
- ³⁹AgSource, -, United States
- ⁴⁰ACHA. Asociación Criadores de Holando Argentino, Ciudad Autónoma de Buenos Aires, Argentina
- ⁴¹Állattenyésztési Teljesítményvizsgáló Kft (Livestock Performance Testing Ltd.), Gödöllő, Hungary
- ⁴²Asociación Nacional de Criadores de Ganado Vacuno Selecto de Raza Parda, León, Spain
- ⁴³Cattle Breeders' Association, Baltata Romaneasca Simmental Type,, Harman, Romania

- 44Cattle Information Service, Telford, United Kingdom
- ⁴⁵Croatian Agricultural Agency, Zagreb, Croatia
- ⁴⁶Dairy Cattle Research Centre, Shandong Academy of Agricultural Sciences, Ji'nan, China
- 47 Eesti Põllumajandusloomade Jõudluskontrolli AS, Tartu, Estonia
- ⁴⁸Laboratory for Milk Quality Control, Faculty of Agriculture, University of Novi Sad, Novi Sad, Croatia
- ⁴⁹National Dairy Development Board, Anand, India, Anand, India
- ⁵⁰National DHIA, Madison, United States
- ⁵¹National Milk Records PLC, Chippenham, United Kingdom
- ⁵²Shanghai Dairy Cattle Breeding Center Co., Ltd., Shanghai, China
- ⁵³South African Stud Book and Animal Improvement Association, Bloemfontein, South Africa
- ⁵⁴State Enterprise Agency of animal Identification and registration, Kiev, Ukraine
- 55COOPRINSEM, Osorno, Chile
- ⁵⁶AgSource InfoLytics, Verona, United States

The ICAR Dairy Cattle Milk Recording WG (DCMRWG) is currently rolling out changes to the dairy cattle milk recording section of the ICAR Guidelines, which were approved in Auckland at the beginning of 2018. The core activities of the group are to improve 24-hour calculations used in classical milk recording and automatic milking systems. It was decided that preparations would be given over in the short term to improving the 24-hour calculations section of the Guidelines: Procedure

1, Section 2 – Computing 24-Hour Yields. Before any changes in the Guidelines, is necessary to monitor and analyse current situation in milk recording organisation, their needs and problems. The DCMRWG invited various organisations from around the world to take part in a survey. Data was obtained from 52 organisations in total. The survey consisted of 90 questions. The survey presents an overview of the current situation and is the basis for all planned changes. As well as monitoring the current situation, the survey aims to establish a future policy and set out recommendations as a way of harmonising practice worldwide. It is also hoped that the survey will serve as a springboard for instigating discussion among milk recording organisations and assessing needs. This was one of the main goals of the project is to strengthen communication and encourage the exchange of information between working groups and MROs alike. As the survey will deliver aggregated data, practice will be benchmarked for respective organisations to reflect common practice in this field worldwide.

The first part of the study consists of several sections: a general overview, practical experiences with methods recommended in the ICAR Guidelines, problem areas MROs wish to address, priorities and needs, and processes used to estimate coefficients and factors. Some organisations estimate their own factors and coefficients and survey gave an overview on the following areas: number of

organisations which estimate own factors and coefficients, problems with estimations, number of animals and herds used for estimations (different indicators used), time period between estimations or recalculations, how cows and herds are chosen, criteria used for selecting herds and cows, data editing and criteria for data exclusion, factors and coefficients used nationally or differences between breeds and regions, estimations and recalculations of conventional methods (not from AMS), what comparisons are used, results from estimations or recalculations (am/pm, method Z, etc.) and the types of statistical indicators used.

The results of the survey should prove invaluable when making changes to the ICAR Guidelines and for benchmarking MROs in a global context, adapting methodologies among organisations where relevant.

Acknowledgements: The ICAR Dairy Cattle Milk Recording WG wishes to thank all of the organisations that took part in the survey.