S04(T)-OP-4

Global 24-hour calculation trends in automatic milking systems

Pavel Bucek¹, Xavier Bourrigan², Friedrich Reinhardt³, Kai Kuwan³, Juho Kyntäjä⁴, Danuta Radzio⁵, Yaniv Lavon⁶, Bruce Dokkebakken⁷, Carlos Trejo⁸, Kevin Haase⁹, Franz Josef Auer¹⁰, Filippo Miglior¹¹, Antonio Martins¹², Julio Carvalheira¹², Richard Cantin¹³, Tone Roalkvam¹⁴, Guðmundur Jóhannesson¹⁵, Nils-Erik Larsson¹⁶, Marta Dianová¹⁷, Filippo Rapaioli¹⁸, Fernando Sotelo¹⁹, Jere High²⁰, David Hambrook²¹, Armand Braun²², Eric Barras²³, Uffe Lauritsen²⁴, Veronique Frappreau²⁵, Sofia Alday²⁶, Claudio Napolis Costa²⁷, José Augusto Horst²⁸, Galina Fedorova²⁹, Olga Kachanova³⁰, René van der Linde³¹, Brian Coughlan³², Gillon Alain³³, Mauro Fioretti³⁴, R L Bhagat³⁵, A B Pande³⁵, Mario Séguin³⁶, Marija Klopcic³⁷, Erna Galvanovska³⁸, Daina Lodina³⁸, Angie Coburn³⁹, - ACHA⁴⁰, Árpád Kenéz⁴¹, María Jesús⁴², Bularca Ioan Raul⁴³, Janette Mathie⁴⁴, Zdenko Ivkic⁴⁵, JIanbin Li⁴⁶, Aire Pentjärv⁴⁷, Biljana Perisic⁴⁸, Nilesh Nayee⁴⁹, R O Gupta⁴⁹, Steven Sievert⁵⁰, Seamus Gilheany⁵¹, An Pengpeng⁵², Sun Xianzhi⁵², Japie van der Westhuizen⁵³, Volodymyr Tytenko⁵⁴, Augier

Gabriel², Lecomte Christophe², Carlos Lizana⁵⁵, Pavla Rosincinova⁵⁶, Robert Fourdraine⁵⁷, László Dégen⁴¹, Samuel Pinto¹², Glorieux Gery³³, Rotar Mircea Catalin⁴³, Dena Snidall⁴⁴

¹Czech Moravian Breeders' Corporation, Inc., Hradistko, Czech Republic

²France Genetique Elevage, Paris, France

³VIT (Vereinigte Informationssysteme Tierhaltung w.V) IT-Solutions for Animal Production, Verden, Germany

⁴Mtech Digital Solutions (ProAgria Group), Vantaa, Finland

⁵Polish Federation of Cattle Breeders and Dairy Farmers, Warsaw, Poland

⁶Israeli Cattle Breeders' Association, -, Israel

⁷Minnesota DHIA, Buffalo, United States

⁸Milk recording consultant, -, Chile

⁹NorthStar Cooperative, Lansing, United States

¹⁰LKV Austria Gemeinnützige GmbH, Wien, Austria

¹¹Ontario Genomics, Toronto, Canada

¹²ANABLE, Aveiro, Portugal

¹³CanWest DHI, -, Canada

¹⁴TINE SA, Oslo, Norway

¹⁵Icelandic Agricultural Advisory Centre, Selfoss, Iceland

¹⁶Växa Sverige, Uppsala, Sweden

¹⁷Breeding Services of the Slovak Republic, S. E., Bratislava, Slovakia ¹⁸Asociacion Colombiana De Criadores De Ganado Simmental Simbrah Y Sus Cruces – Asosimmental Simbrah, Bogota, Colombia ¹⁹Instituto Nacional para el Control y el Mejoramiento Lechero, -, Uruguay ²⁰Lancaster Dairy Herd Improvement Association, Manheim, United States ²¹Royal Jersey Agricultural & Horticultural Society, Royal Jersey, United Kingdom ²²CONVIS S.C., Ettelbruck, Luxembourg ²³ASR-Switzerland, Zollikofen, Switzerland ²⁴RYK. Aarhus. Denmark ²⁵IDELE, Paris, France ²⁶Spanish Holstein Confederation, Pinto, Spain ²⁷Embrapa Dairy Cattle, Juiz de Fora, Brazil ²⁸Associação Paranaense de Criadores de Bovinos da Raça Holandesa, Curitiba – Paraná, Brazil ²⁹Regional IT Centre for Dairy Cattle Breeding in the Leningrad Region, Plinor, Saint-Petersburg, Tyarlevo, Russian Federation ³⁰Plinor, Ltd., -, Russian Federation ³¹CRV B.V., Arnhem, Netherlands ³²ICBF. -. Ireland ³³Association wallonne de l'élevage asbl, Ciney, Belgium ³⁴Associazione Italiana Allevatori (A.I.A.), Rome, Italy ³⁵BAIF, Development Research Foundation, Uruli Kanchan, India ³⁶Valacta, Sainte-Anne-de-Bellevue, Canada ³⁷University of Ljubliana, Domzale, Slovenia ³⁸Agricultural Data Centre, Riga, Latvia ³⁹AgSource, -, United States ⁴⁰ACHA. Asociación Criadores de Holando Argentino, Ciudad Autónoma de Buenos Aires, Argentina ⁴¹Állattenyésztési Teljesítményvizsgáló Kft (Livestock Performance Testing Ltd.), Gödöllő, Hungary ⁴²Asociación Nacional de Criadores de Ganado Vacuno Selecto de Raza Parda, León, Spain ⁴³Cattle Breeders' Association, Baltata Romaneasca Simmental Type, Harman, Romania

⁴⁴Cattle Information Service, Telford, United Kingdom
⁴⁵Croatian Agricultural Agency, Zagreb, Croatia
⁴⁶Dairy Cattle Research Centre, Shandong Academy of Agricultural Sciences, Ji'nan, China
⁴⁷Eesti Põllumajandusloomade Jõudluskontrolli AS, Tartu, Estonia
⁴⁸Laboratory for Milk Quality Control, Faculty of Agriculture, University of Novi Sad, Novi Sad, Serbia
⁴⁹National Dairy Development Board, Anand, India, Anand, India
⁵⁰National DHIA, Madison, United States
⁵¹National Milk Records PLC, Chippenham, United Kingdom
⁵²Shanghai Dairy Cattle Breeding Center Co., Ltd., Shanghai, China
⁵³South African Stud Book and Animal Improvement Association, Bloemfontein, South Africa
⁵⁴State Enterprise Agency of animal Identification and registration, Kiev, Ukraine
⁵⁵COOPRINSEM, Osorno, Chile
⁵⁶Breeding Services of the Slovak Republic, S. E., Bratislava, Slovakia
⁵⁷AqSource InfoLytics, Verona, United States

The ICAR Dairy Cattle Milk Recording WG finished its work on the new version of the ICAR Guidelines in February 2018, with the new version approved at the ICAR General Assembly in Auckland. Changes were made to general aspects of cattle milk recording. Over the short term, it was decided that priority be given to improving the 24-hour calculations section of the Guidelines: Procedure 1, Section 2 – Computing 24-Hour Yields. The work comprises several research projects, technical analyses and policy discussions. Central to these efforts, the ICAR Dairy Cattle Milk Recording WG is committed to engaging in discussion with various milk recording organisations and ICAR members working in this sector. To that end, the group is holding a milk recording workshop and technical session at ICAR 2019 in order to stimulate discussion on the types of changes needed in this field.

The ICAR Dairy Cattle Milk Recording WG (DCMRWG) is currently researching current practice toward improving the 24-hour calculations section of the Guidelines: Procedure 1, Section 2 – Computing 24-Hour Yields. Before any changes are made, however, it is vital that the current situation is assessed comprehensively, delving into key aspects related to methodologies, processes, trends and the opinions of milk recording organisations. The DCMRWG conducted a survey of relevant organisations to address these issues, shed light on the level of harmonisation among players, and set a future direction and strategy on

24-hour calculations for the cattle milk recording sector. One of the goals of the project is to strengthen communication and encourage the exchange of information between working groups and MROs alike. The survey consists of 90 questions and uses solely

aggregated data to reflect global practice. Data was obtained from 52 organisations worldwide, giving a representative example of different situations, needs and the specific problems faced.

This part of the project examines the use of automatic milking systems (milking robots) and gauges the general requirements and opinions of milk recording organisations in this area. It considers the impact of automatic milking systems on the milk recording sector, the different options available when milking herds, methodologies (particularly in related to those recommended in the Guidelines), calculation of fat and protein production, impacts of data quality indicators, sampling schemes, and milk yields from multiple numbers of days. The survey reveals how various organisations use their own factors and coefficients, providing information on how they are estimated. It provides information on data collection periods, how animals and herds are chosen for analysis, how are data edited and how organisations work with data before analysis, how factors are used in particular countries (are they unique or specific according to the region and/or breeds, comparison which is used for results, how results are evaluated from estimations or recalculations (method Z, M...) and which statistical indicators are used. A very important part of the project is to establish a future policy and set out practical recommendations for the future.

The results of the survey will prove invaluable when making changes to the ICAR Guidelines. The group wishes to thank all of the organisations that took part in the survey. Central to these efforts, the ICAR Dairy Cattle Milk Recording WG is committed to engaging in discussion with various milk recording organisations and ICAR members working in this sector. Crucially, however, before any changes are made to the Guidelines, the situation among ICAR members and non-members must be assessed. The group is now conducting a detailed overview on methodologies and practical trends in order to gauge opinion and identify the most pressing issues affecting milk recording organisations.

Acknowledgements: The ICAR Dairy Cattle Milk Recording WG wishes to thank all of the organisations that took part in the survey.