

Technical Session: Advanced analytics for adding value to livestock data

A machine learning approach to describe the welfare status of dairy herds and analyse its association with performance and economics

Gabriel M. Dallago¹, Daniel Warner², Kevin M. Wade¹, Roger I. Cue¹, René Lacroix², Abdoulaye Baniré Diallo³ and Elsa Vasseur¹

¹McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada; ²Lactanet, Sainte-Anne-de-Bellevue, Quebec, Canada; ³Université du Québec à Montréal, Montreal, Quebec, Canada

Montreal, QC, Canada June 2nd, 2022

Research background

- Animal welfare (AW) is part of certification programs¹
 - Implementation of AW solutions is linked with their economic return
 - Unclear relationship between AW and herd performance and economics
 - ► High milk production associated with high prevalence of lameness in tie-stall barns (N = 100 Farms)²
 - ➤ Low milk production associated with low prevalence of knee lesions and lameness in free-stall barns (N = 130 Farms)³
- Objectives
 - 1.Describe the welfare status of Quebec dairy herds
 - 2. Analyse the relationship with productivity, profitability, and longevity

Research approach - Data

2,980 Quebec Dairy Herds – 2016 to 2019

Welfare

- proAction® 1
 - Body condition score (% BCS ≤ 2)
 - Hock lesion (%)
 - Knee lesion (%)
 - Neck lesion (%)
 - Lameness (%)
- Herd Status Index (HSI)²

Performance and Profitability

- Energy corrected milk (ECM; kg)
- Milk value (\$CAD)
- Longevity
 - Length of productive life (years)
 - Cows on 3+ lactation (%)

- 1. Dairy Farmers of Canada, 2018, proAction®: Reference manual
- 2. Warner et al., 2020, Animals. 10:1689

Research approach - Statistical analysis

Statistical Analysis

- Self-Organizing map¹
 - Artificial neural network that creates a nonlinear, ordered, and smooth mapping of high-dimensional data into a regular 2-dimensional array¹
 - Two-layered map
 - ➤ 1st layer = Barn type and year-season
 - ➤ 2nd layer = Welfare data

Research approach - Statistical analysis

Statistical Analysis

- Self-Organizing map¹
- Clustering
 - Partitioning around medoids, hierarchical, and normal mixture model-based
 - Cluster quality and cluster stability
 - > Chose the clustering algorithm
 - > Chose the number of clusters

Research approach - Statistical analysis

Statistical Analysis

- Self-Organizing map
- Clustering
- Machine learning models
 - Tree-based (RPART, GBM, XGBM, RF) and support vector machine
 - 80:20 data split ratio -> Training and validation
 - Models trained using 10-fold cross-validation
 - Describes welfare clusters
 - > Predict cluster labels using welfare indicators as inputs + Partial dependency plots
 - Evaluate relationship with performance and profitability
 - Predict cluster labels using <u>productivity and performance indicators</u> as inputs + Accumulated local effects

Technical results

- Stable and homogeneous welfare clusters!
 - Algorithm = Partitioning around medoids
 - Clusters = 3
- Describing clusters
 - Support vector machine model
 - \triangleright Overall accuracy = 0.85 (0.81 0.87)

- Performance and profitability
 - Extreme gradient boosting machine (XGBM)
 - ➤ Weighted classification (W = Number of herds)
 - \triangleright Overall accuracy = 0.44 (0.40 0.48)

Practical results

- Describing clusters
- Performance and profitability

High probability Average

Describing clusters

Animal Welfare:

•High BCS \leq 2 (5.2%), high lameness (17.3%) and high hock

lesionPerformance and profitability

Performance and Profitability:

•High milk value (CAD\$8,081.3) and low 3+ lactation (42.3%)

Cluster 3 (N = 1,659; 55.7%)

Animal Welfare:

•Best overall welfare status

Performance and Profitability:

•High ECM (11,271.6 kg), low milk value (CAD\$7,955.7), and high 3+ lactation (41.3%)

Animal Welfare:

•High neck lesions (9.9%) and high knee lesions (16.2%)

Performance and Profitability:

No association

What can we take from our results?

- Flexible analytical approach
 - Hierarchical representation of data structure
- Different herd welfare profiles/clusters
 - Development of targeted solutions
 - > Adapt management practices and housing
- Weak association between welfare and both performance and profitability
 - Need more comprehensive indicators
 - ➤ Welfare and both performance and profitability
 - ➤ Measures of good welfare instead of *not-bad* welfare

Acknowledgements

- Funding
 - NSERC, Novalait, Dairy Farmers of Canada, and Lactanet Industrial Research Chair

 Agriculture and Agri-Food Canada and Dairy Farmers of Canada through AgriScience Clusters program, Growing Forward 3

> Agriculture and Agri-Food Canada

- Student funding
 - Pilarczyk Fellowship McGill University
 - Grad Excellence Awards McGill University

- > Scholarships provided by Op+lait FRQNT
- ➤ Scholarships provided by NSERC CREATE in Milk Quality
- Fonds de Recherche du Québec Nature and Technologies

Thank you!

Questions?

