

Challenges of integration and validation of farm and sensor data for dairy herd management

K. Schodl, B. Fuerst-Waltl, H. Schwarzenbacher, F. Steininger, M. Suntinger, F. Papst, O. Saukh, L. Lemmens, D4Dairy-Consortium, C. Egger-Danner

Federal Ministry Republic of Austria Climate Action, Environment, Energy, Mobility, Innovation and Technology

 Federal Ministry Republic of Austria Digital and Economic Affairs vienna business agency

Introduction

Precision livestock farming (PLF)

- Sensor technology on dairy farms
- Herd (health) monitoring

Sensor data: large amount of current data

- Early detection of specific diseases or disease complexes
- Integration of additional farm data
- Analyses across farms and sensor systems
 → development of herd health management tools
- Proxies for functional or health traits in breeding
 → possibility of largescale phenotyping

Possibility? Prerequisites? We need a project to tackle this!

WE STORY OF D4DAIRY. OR HOW TO TAME THESE SENSOR DATA

D4Dairy – Sensor data

- Farms with sensor systems were motivated to participate
- Data collection January 2020 August 2021

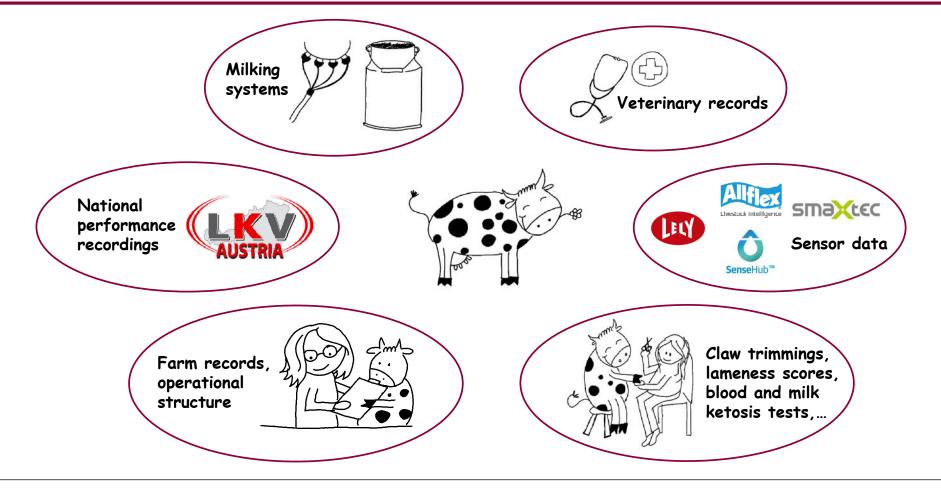
Sensor systems

- **Smaxked 25 farms**, activity, ruminal temperature and drink cycles, 10 min intervals
 - **35 farms**, activity and rumination time, 2 hour intervals
- **With O farms**, activity, rumination and feeding time, 2 hour intervals
- <u>A DeLaval</u> **14 farms**, activity alarms (not yet processed)
 - **GEA 9 farms**, activity (not yet processed)

Desired outcomes

- Disease predictions for lameness, ketosis and mastitis
 → foundation for herd management tools
- Auxiliary traits for claw, metabolic and udder health
 → foundation for genetic health indices

Integration with other farm data



WINCE UPON A TIME THERE WAS A PRINCESS NAMED VALIDATION ...

Data validation – sensor data

- Validation of the sensor systems by the companies based on (scientific) studies
 - Comparison to gold standard (e.g. behavioural observations)
 - Tailored to the company's purpose or application
 - → check validation study before further use of sensor variables!

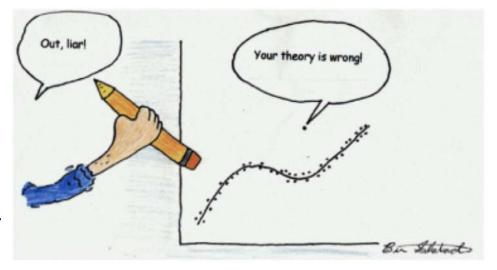
Validation of output data for own purpose

- Clean data for outliers and implausible values, which may interfere with any further analyses
- Depending on the purpose excluding expectable deviations (e.g. time around calving) may be necessary

Data validation – data quality and robustness

Outliers

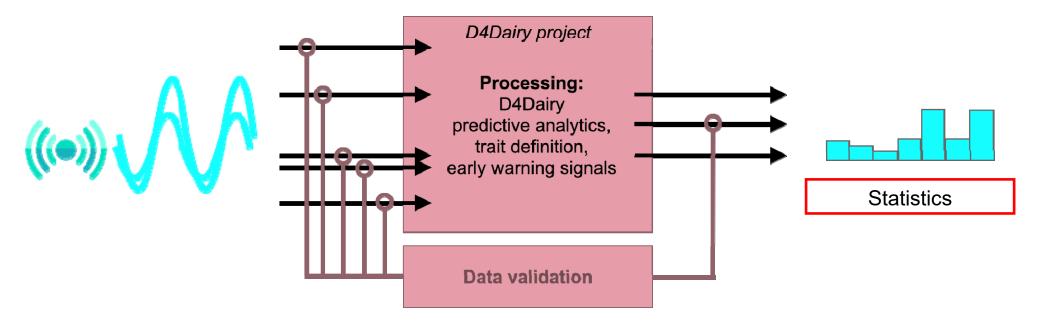
- Outliers cause surprise in relation to the majority of the samples
- **BUT** outliers may be correct and a physiological response we are looking for!
- It can be difficult or even impossible to spot 'real' outliers in multivariate or highly structured data



- Using statistical approaches to detect outliers
- Spotting outliers using domain expert knowledge

Data validation – automatic outlier detection

• Data quality assurance using Isolation Forest anomaly score



F. Papst, K. Schodl, O. Saukh

Exploring Co-dependency of IoT Data Quality and Model Robustness in Precision Cattle Farming

International Workshop on Challenges in Artificial Intelligence and Machine Learning for Internet of Things (AIChallengeloT 2021)

Data validation – manual outlier detection

Removal of duplicates & missing data

Potentially erroneous measurements:

- Consultation with sensor company
- Isolated measurements (time to next/previous data point exceeded regular frequency of data retrieval from the sensor)
- Multiple measurements within the regular time window of data retrieval

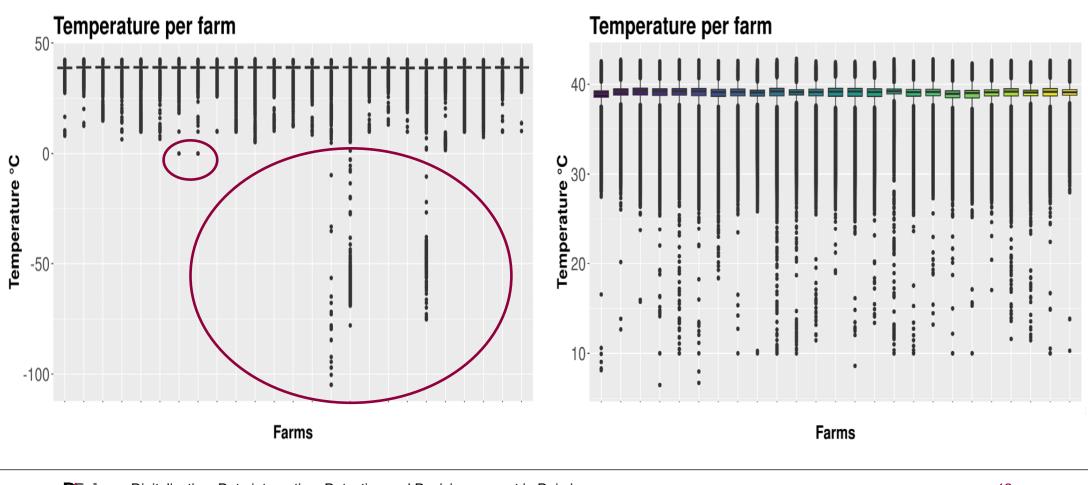
• Time alignments:

• Variables calculated based on sensor measurements were not aligned and had to be shifted to match the correct time of data retrieval

Data validation – Plausibility assessment

- Plausibility assessment using a priori knowledge Time and temperature
 - More than 12 hours with 0 activity or rumination time → sensor not yet administered
 - Temperature range in the data set: -104.9°C 42.9°C
 - Negative temperature values physiologically impossible \rightarrow faulty data due to low sensor battery was discarded (6.3°C)

Data validation – Plausibility assessment



3

DDairy

Data validation – Plausibility assessment

- Plausibility assessment using a priori knowledge Time and temperature
 - More than 12 hours with 0 activity or rumination time → sensor not yet administered
 - Temperature range in the data set: -104.9°C 42.9°C
 - Negative temperature values physiologically impossible
 → faulty data due to low sensor battery was discarded (6.3°C)

Depending on the level of aggregation and pre-processing

- Lely & Sensehub: pre-processed and aggregated → plausibility checks OK
- smaXtec: data as provided by the bolus prior to any processing for analysis
 - ~5% of the data had to be discarded based on the above criteria

Data validation – other farm data

- Milking intervals should be >60 min or <24 hours
- Single milkings should exceed 1 kg
- First milking of lactation was discarded
- Milk production per hour: discard if >50% higher than ±10-day average of the animal in the current lactation
- ~2% of the data did not fulfil the criteria
- Cross-validation of data sets
 - Calving dates in the sensor data compared to data from AMS and official calving records (multivariate plausibility checks)

ALIDATION SUCCESSFULLY MASTERED THE FIRST PART OF THE QUEST, BUT THERE IS MORE TO COME...

Data validation – challenges to tackle

Comparisons of sensor systems for detection of diseases

- Compare results of disease detection between sensor systems with respect to data patterns (e.g. activity patterns)
- Genetic analyses: auxiliary traits from different sensor systems for the same disease complex

Routine application

- Stable test data set → use in routine genetic evaluation and herd management requires automatization
- Algorithms for data quality assurance based on machine learning approaches
- Concepts for (automatic) multivariate plausibility assessment of data
- Who takes the final decision human or artificial intelligence?

HE END (OF PART 1).

Thank you for your attention!

he end (of part 1).