

Greenhouse gases emissions (GHG) in dairy cattle

✓ Dairy cattle account for 20% of the global livestock sector's GHG

✓ GHG emissions from dairy cattle are in the form of CH₄ (44%), N₂O (29%), and CO₂ (27%)

Reducing CH₄ emissions from dairy cows

- \checkmark CH₄ from cows represents 70% of total CH₄ emissions of agricultural sector
- \checkmark Reducing CH₄ emissions from dairy cows is important at two aspects:
 - 1. Environmental concerns Climate change

2. Economical perspective 6% to 10% of gross energy is lost as CH₄

Nitrogen use efficiency in dairy cattle

✓ Protein is the most expensive part of a diet

✓ Feed protein is mainly metabolized into different forms of nitrogen in the cow's body

✓ Nitrogen use efficiency of dairy cows ranges from 20% to 44%

Improving nitrogen use efficiency of dairy cows

- √ N₂O is 310 times more powerful greenhouse gas than CO₂
- ✓ Improving nitrogen use efficiency of dairy cows is important at two aspects:
- 1. Environmental concerns Climate change

2. Economical perspective > 50% intake nitrogen is not used

Regulation of CH₄ emissions and nitrogen use efficiency of dairy cows

- ✓ Improvement of feeding strategies
- ✓ Genetic selection
 - √ cost-effective
 - ✓ permanent strategy
- ✓ For genetic selection, traits need -

- ✓ to be well defined
- √ to be recordable (milk MIR predicted)
- ✓ to be genetically variable and heritable

Research Objectives

The aims of this study were to estimate

√ Genetic parameters of two MIR-based "proxies" for CH₄ features

✓ Genetic correlations of the CH⁴ features with nitrogen use efficiency proxies

Material and Methods

Methane emissions traits:

- ✓ Milk MIR spectra were used to predict CH₄ emissions (PME, g/d) Vanlierde et al. (2021)
- √ Log-transformed CH₄ intensity (LMI) was defined as log of PMI
 CH₄ intensity (PMI) defined as PME per kg of milk yield (kg/d)

Material and Methods

- **✓** Data and model for CH₄ traits:
 - √ 1,529,282 test-day records in first parity
 - ✓ Random regression test-day model

✓ EBV and its relibility for Predicted nitrogen use efficiency (PNUE) and losses (PNL)

Journal of Dairy Science
Volume 104, Issue 4, April 2021, Pages 4413-4423

Research

Estimation of genetic parameters for predicted nitrogen use efficiency and losses in early lactation of Holstein cows

Y. Chen ¹, S. Vanderick ¹, R.R. Mota ¹, C. Grelet ², GplusE Consortium *, N. Gengler ¹ A M

Material and Methods

✓ Approximate genetic correlation by EBV of selected bulls

$$\hat{\rho}_{aa'} = \frac{\sqrt{(\sum b_i)(\sum b_i')}}{\sum b_i b_i'} \text{r(EBV, EBV')}$$

 b_i is the reliability of EBV for trait a (Blanchard et al.,1983)

✓ Conditions for selecting bulls
Reliability of EBV for used traits > 0.30

Results 1 — Data description

Traits	Mean	SD	Peak value	Peak time
MY	23.57	6.13	27.02	42
PME	326.82	67.65	341.62	80
PMI	14.97	5.70	18.65	344
LMI	2.64	0.35	2.83	344

Results 2 — Heritability

Range of daily heritability for

$$\checkmark$$
PME → 0.07 — 0.21

$$\checkmark$$
LMI \rightarrow 0.16 $-$ 0.30

Mean (SD) daily heritability for

$$\checkmark$$
PME → 0.14 (0.05)

 \checkmark LMI → 0.24 (0.05)

Results 3 – Selected Bulls

A total of 420 bulls were used to estimate approximated genetic correlation (AGC)

	PME	LMI	PNUE	PNL
Mean reliability (SD)	0.84 (0.16)	0.84 (0.16)	0.48 (0.15)	0.49 (0.15)

Results 4 – Approximated genetic correlation

Approximated genetic correlation between four traits in the first parity (SE, n=420)

	Predicted nitrogen use efficiency	Predicted nitorgen losses
PME	-0.33 (0.07)	0.43 (0.08)
LMI	-0.60 (0.07)	0.32 (0.08)

Conclusions

- ✓ Two MIR-based "proxies" for CH₄ features were validated to be genetically variable and heritable → Genetic selection
- ✓ Genetic selection → CH₄ emissions → + N loss → + Nitrogen use efficiency

 in dairy cows → simultaneously selection
- **✓** Before introduction of these traits in a selection index, further studies needed:
 - ✓ Genetic correlation between these proxies (index traits) and direct trait (breeding objective trait)
 - ✓ Evaluate effect of inclusion in selection index on all traits already present in the current one

Future perspectives

Holistic breeding goals

- ✓ CH₄
- ✓ Nitrogen use effciency
- Resilience
- ✓ Longevity
- **/**

(Chen et al., 2021)

Thank you for your attention!

Questions?

Hadi.Atashi@uliege.be Yansen.chen@uliege.be Nicolas.Gengler@uliege.be

