Large scale phenotyping of methane for genetic evaluation is possible with Sniffers

ICAR - Recording and selection tools for feed efficiency and environmental impact

1/06/2022 Michael Aldridge, Anouk van Breukelen, Roel Veerkamp, Yvette de Haas

michael.aldridge@wur.nl
Introduction

- The Dutch Government climate goals
 - 55% by 2030
 - Carbon neutral by 2050

- Breeding is a useful tool to help achieve these goals

- We have reviewed our decision and results on large scale recording with sniffers
Current Projects

- **Climate envelope**
 - Data collection with sniffers and GreenFeed
 - Preliminary genetic parameters
 - Microbiability
 - N and P use efficiency

- **Climate Smart Cattle Breeding**
 - Goal is to have breeding values available for selection
 - Recording methane on 100 farms
 - Parameter estimation and developing a selection index
Why do we want to do large scale recording?

Current trends

- Methane production (g/day)
- Methane intensity (g/kg)

Year

With CH$_4$ selection

- Methane intensity (g/kg)
 - With no selection
 - Genomic prediction
 - Theoretical maximum

Year

Why do we want to do large scale recording?

[Graph showing reliability of prediction (%) vs. number of years recording for recording with 50 and 100 sniffers.]

Developing a sniffer and lessons learned

- 15 first generation sniffers
 - To date, over 1,800 cows and over 300,000 individual visits
 - Prone to calibration drift
 - Accuracy limitations
 - Susceptible to environment
 - Difficult to carry and mount
 - Data transfer was constrained
Developing a sniffer and lessons learned

- 90 second generation sniffers
 - Still a developing technology
 - Higher accuracy (potentially)
 - Improved housing
 - Communication integration
Installation of sniffers

- 15-20 sniffers currently installed in barns
- 100 sniffers will be installed by the end of summer
- Sniffers will be installed for 2 years
- Recording methane on over 15,000 cows
Installation of GreenFeed

- GreenFeed has been installed on 16 farms
 - To date 822 cows phenotyped
 - GreenFeed continues to be used in the Climate Envelope
 - We are not actively using GreenFeed for large scale phenotyping
Use of large scale recording in genetics

- Data processing is needed to match milking robot and sniffer information, identify sniffer malfunctions, and remove background methane.
- Visit, daily and weekly methane are:
 - Heritable (0.13 to 0.32)
 - Repeatable (0.30 to 0.68)

https://doi.org/10.3168/jds.2021-21420 (Breukelen et al. 2022)
Phenotypic analyses

GreenFeed

![Graph showing Mean CH₄ (g/day) over Days in milk]

Sniffer

![Graph showing Mean CH₄ (ppm) over Days in milk]

![Graph showing Mean CH₄ (g/day) over Hour of the day]

![Graph showing Mean CH₄ (ppm) over Hour of the day]
Parameter estimates

Daily methane parameter estimates

<table>
<thead>
<tr>
<th></th>
<th>GF CH$_4$</th>
<th>Sniffer CH$_4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>GF CH$_4$</td>
<td>0.20 ± 0.02</td>
<td>0.39 ± 0.03</td>
</tr>
<tr>
<td>Sniffer CH$_4$</td>
<td>0.71 ± 0.13</td>
<td>0.18 ± 0.01</td>
</tr>
</tbody>
</table>

Heritabilities are reported on the diagonal, phenotypic correlation above and genetic correlation below the diagonal.

Estimates for CO$_2$ and weekly methane are available in an additional slide if you are interested.

More information is available in WCGALP and will be submitted for publication soon (contact anouk.vanbreukelen@wur.nl)
Next steps

- Microbiome rumen sampling and parameter estimation
- Continue installation on 100 farms
- Genetic correlations with other traits in the selection index
- Develop a selection index
- Publish breeding values for methane
Thank you

Large scale phenotyping of methane for genetic evaluation is possible with Sniffers

Michael Aldridge, Anouk van Breukelen, Roel Veerkamp, Yvette de Haas
Daily methane parameter estimates

<table>
<thead>
<tr>
<th></th>
<th>GF CH₄</th>
<th>GF CO₂</th>
<th>Sniffer CH₄</th>
<th>Sniffer CO₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>GF CH₄</td>
<td>0.20 ± 0.02</td>
<td>0.69 ± 0.01</td>
<td>0.39 ± 0.03</td>
<td>0.20 ± 0.04</td>
</tr>
<tr>
<td>GF CO₂</td>
<td>0.94 ± 0.03</td>
<td>0.26 ± 0.03</td>
<td>0.32 ± 0.04</td>
<td>0.25 ± 0.04</td>
</tr>
<tr>
<td>Sniffer CH₄</td>
<td>0.71 ± 0.13</td>
<td>0.54 ± 0.15</td>
<td>0.18 ± 0.01</td>
<td>0.78 ± <0.01</td>
</tr>
<tr>
<td>Sniffer CO₂</td>
<td>0.39 ± 0.16</td>
<td>0.51 ± 0.15</td>
<td>0.93 ± 0.01</td>
<td>0.20 ± 0.01</td>
</tr>
</tbody>
</table>

Weekly methane parameter estimates

<table>
<thead>
<tr>
<th></th>
<th>GF CH₄</th>
<th>GF CO₂</th>
<th>Sniffer CH₄</th>
<th>Sniffer CO₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>GF CH₄</td>
<td>0.33 ± 0.04</td>
<td>0.76 ± 0.01</td>
<td>0.37 ± 0.05</td>
<td>0.19 ± 0.06</td>
</tr>
<tr>
<td>GF CO₂</td>
<td>0.65 ± 0.05</td>
<td>0.34 ± 0.05</td>
<td>0.31 ± 0.05</td>
<td>0.24 ± 0.06</td>
</tr>
<tr>
<td>Sniffer CH₄</td>
<td>0.76 ± 0.15</td>
<td>0.72 ± 0.16</td>
<td>0.32 ± 0.02</td>
<td>0.84 ± <0.01</td>
</tr>
<tr>
<td>Sniffer CO₂</td>
<td>0.41 ± 0.18</td>
<td>0.60 ± 0.17</td>
<td>0.93 ± 0.01</td>
<td>0.32 ± 0.02</td>
</tr>
</tbody>
</table>