Measuring individual carbon dioxide emissions as a proxy for feed efficiency on dairy farms

- Preliminary results

István Fodor

Nico Ogink, Fedde de Jong, Yvette de Haas

How to assess feed efficiency?

- Directly measure individual feed intake:
 - Laborious, costly, difficult to manage
- Alternatives:
 - Estimate (e.g. computer vision)
 - Proxies

Residual CO₂ as a proxy for feed efficiency¹

- Concept ~ residual feed intake (RFI)
- RCO₂ = actual CO₂ production predicted CO₂ production

Estimate from breath measurements

Based on e.g. energy-corrected milk & metabolic body weight

- 11 respiration chamber studies
- Conclusions:
 - Potential for ranking cows based on feed efficiency
 - On-farm studies needed

Aim

• RFI vs. RCO₂ using GreenFeed data in mid-lactation on a dairy farm

Materials and methods

- 5 GreenFeed experiments on Dairy Campus of WUR (anonymized)
- n = 313 cow-treatment observations
- 115-175 DIM
 - Minimize effect of energy balance changes
 - Highly correlated with average RFI over the whole lactation²
- No information: feed composition, CH₄
- RCO₂ & RFI ~ mixed-effects models:
 - Energy-corrected milk & metabolic body weight
 - Treatment and experiment

Input and output levels

Energy-corrected milk 31.7 ± 5.3 kg/d

Dry matter intake $20.5 \pm 3.5 \text{ kg/d}$

 CO_2 production 13.7 ± 1.3 kg/d

RFI vs. RCO₂

$$r = 0.52$$

Differences in RCO₂ (kg/d) by RCO₂ group

3 equal-sized (n = 104-105) groups created: high/mid/low residual CO_2

Value of RCO2 by RCO2 group

Comparison	Difference (kg/d)	95% CI	P-value
Low vs. High	-1.92	-2.06; -1.78	<0.0001
Mid vs. High	High -1.02 -1.16; -0.8		<0.0001
Low vs. Mid	-0.90	-1.04; -0.76	<0.0001

Differences in RFI (kg/d) by RCO₂ group

Value of RFI by RCO2 group

Comparison	Difference (kg/d)	95% CI	P-value
Low vs. High	-1.31	-1.67; -0.95	<0.0001
Mid vs. High	id vs. High -0.89		<0.0001
Low vs. Mid	-0.42	-0.78; -0.06	0.0168

Relevant differences in feed efficiency between RCO₂ groups

Classification accuracy

RFI group		RCO ₂ group	
	High	Mid	Low
High	59.0	24.8	16.2
Mid	26.9	37.5	35.6
Low	14.4	37.5	48.1

Overall: 48.2%

Inefficient ↔ efficient misclassification rare

Conclusions & Implications

- RCO₂ is a promising proxy for feed efficiency
 - Highly repeatable CO₂ measurements required
 - Same diet & lactation stage
- Effect of energy balance:
 - Mid-lactation
 - Estimate energy balance

Thank you for the attention!

istvan.fodor@wur.nl