Genetic selection for lower methane emission in dairy cattle – ready for implementation?

Birgit Gredler-Grandl & ICAR Feed&Gas working group

47th ICAR meeting, 2024
2021 FAO Livestock e-Methane (kt)

Tier 1 emissions

➢ Total enteric methane emissions from 5 major livestock species was 97,384 (kt) in 2021.

<table>
<thead>
<tr>
<th>Species</th>
<th>E-Methane Emissions (kt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beef cattle</td>
<td>54,973</td>
</tr>
<tr>
<td>Dairy cattle</td>
<td>18,550</td>
</tr>
<tr>
<td>Buffalo</td>
<td>11,217</td>
</tr>
<tr>
<td>Sheep</td>
<td>7,088</td>
</tr>
<tr>
<td>Goats</td>
<td>5,556</td>
</tr>
</tbody>
</table>

Beef cattle 56%
Sheep total 19%
Dairy cattle 12%
Buffalo 7%
Goats total 6%
Scope – dairy cattle in Global North
Where to start?

- 1. Definition of production system
- 2. Definition of breeding goal
- 3. Collection of information
 - Phenotypes
 - Family relationships
 - Genotypes
- 4. Determining selection criteria
 - Genetic model
 - Breeding value estimation
- 5. Selection and mating
 - Predicting selection response
 - Consequences of mating decisions
- 6. Dissemination
 - Structure of breeding program
 - Crossbreeding
- 7. Evaluation
 - Genetic improvement
 - Genetic diversity
Number of CH₄ phenotyped - Holstein cattle

27,314 Holstein cattle
Number of CH$_4$ phenotyped cattle – Jersey and Nordic Red breeds

9,050
Jersey, Red Dairy, Finnish Red, Norwegian Red
Number of CH$_4$ phenotyped cattle – Fleckvieh and Brown Swiss

1,000 Fleckvieh and 200 Brown Swiss cows with GreenFeed

1,500 Brown Swiss cows with sniffers

Session 11: Pitch Kristina Linke

Session 11: Pitch Beat Bapst
<table>
<thead>
<tr>
<th>Country</th>
<th>Number of Cows</th>
<th>Feed Type</th>
<th>Sniffer Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Germany</td>
<td>200 HOL</td>
<td>GreenFeed</td>
<td>600 RB with sniffers</td>
</tr>
<tr>
<td>USA</td>
<td>4,000 HOL</td>
<td>GreenFeed</td>
<td>Routine recording with sniffers</td>
</tr>
<tr>
<td>Canada</td>
<td>3,500/a HOL</td>
<td>GreenFeed & sniffer</td>
<td>Routine recording with sniffers</td>
</tr>
</tbody>
</table>
How to measure CH$_4$ in dairy cattle?

Respiration chambers

- open/closed indirect calorimetry
- Gold standard
- Not used large-scale
How to measure CH$_4$ in dairy cattle?

SF6 tracer gas technique – SF$_6$

- Air is sampled near nostrils
- Permeation tube containing SF6 is placed in rumen
- Pre-determined release rate of SF6 is multiplied by the ratio of CH4 to SF6 concentrations in the canister to calculate CH4 emission rate
- Australia, Belgium, ...
How to measure CH$_4$ in dairy cattle?

GreenFeed (C-Lock Inc., Rapid City, South Dakota, USA)

- Close to Gold Standard

- Sniffer system where breath samples are provided when animals visit a bait station

- Flux

- USA, CAN, IRE, ...
How to measure CH$_4$ in dairy cattle?

- Air is sampled during feeding
- Canada, Denmark, Netherlands, Spain, Switzerland
How to measure CH$_4$?
Is methane emission heritable?

<table>
<thead>
<tr>
<th>POP</th>
<th>method</th>
<th>trait</th>
<th>h^2</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>HOL NL</td>
<td>sniffer</td>
<td>ppm</td>
<td>0.32</td>
<td>Van Breukelen et al., 2023</td>
</tr>
<tr>
<td>HOL ESP</td>
<td>sniffer</td>
<td>ppm</td>
<td>0.20</td>
<td>Gonzalez-Recio et al., 2024</td>
</tr>
<tr>
<td>HOL CAN</td>
<td>GreenFeed</td>
<td>g/d</td>
<td>0.16</td>
<td>Kamalanathan et al., 2023</td>
</tr>
</tbody>
</table>
Genetic correlations between other traits?

<table>
<thead>
<tr>
<th>Trait</th>
<th>dDMI</th>
<th>BW</th>
<th>CH4</th>
</tr>
</thead>
<tbody>
<tr>
<td>dDMI</td>
<td>0.29 (0.05)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BW</td>
<td>0.59 (0.11)</td>
<td>0.57 (0.05)</td>
<td></td>
</tr>
<tr>
<td>CH4</td>
<td>0.65 (0.10)</td>
<td>0.50 (0.09)</td>
<td>0.39 (0.04)</td>
</tr>
</tbody>
</table>

Bakke et al., 2024

Gonzalez-Recio et al., 2024

Session 11: Anouk van Breukelen
How many cows with phenotypes do we need?

Gonzalez-Recio et al. (2014)
How many cows with phenotypes do we need?

Gonzalez-Recio et. al. (2014)
Proxies for methane emission – multi-trait approach

Methane BV

- MIR/NIR
- Microbiome
- Green Feed
- Sensors
- Novel approaches
- Sniffers
Definition of methane trait in the breeding goal?

Methane production
- g/day
- Easy to understand
- Climate targets

Methane yield
- CH4 per unit of input
- Ratio trait
- Industry reporting
Definition of methane trait in the breeding goal?

Methane intensity

- CH4 per unit of output
- Ratio trait
- Industry reporting

Residual methane

- Expected vs observed
- Difficult to interpret

![Graph showing methane production vs feed intake/body weight](image)
Are we ready for implementation?

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CAN00102773216</td>
<td>2017</td>
<td>2034</td>
<td>0.06</td>
<td>69.93</td>
<td>96.68</td>
<td>0.81</td>
<td>5.86</td>
<td>3.85</td>
<td>102</td>
<td>76</td>
<td>115</td>
<td>110</td>
<td>103</td>
<td>110</td>
<td>328</td>
<td>126</td>
<td>99</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>ESP0094801035</td>
<td>2017</td>
<td>1444</td>
<td>0.18</td>
<td>78.58</td>
<td>95.59</td>
<td>1.86</td>
<td>11.12</td>
<td>5.97</td>
<td>106</td>
<td>126</td>
<td>113</td>
<td>111</td>
<td>100</td>
<td>97</td>
<td>297</td>
<td>126</td>
<td>99</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>ESP009456965</td>
<td>2018</td>
<td>752</td>
<td>0.42</td>
<td>70.18</td>
<td>93.98</td>
<td>0.88</td>
<td>2.15</td>
<td>1.9</td>
<td>119</td>
<td>59</td>
<td>123</td>
<td>109</td>
<td>79</td>
<td>66</td>
<td>274</td>
<td>126</td>
<td>99</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>ESP0094401760</td>
<td>2017</td>
<td>1132</td>
<td>0.26</td>
<td>68.12</td>
<td>94.84</td>
<td>1.14</td>
<td>1.14</td>
<td>1.06</td>
<td>119</td>
<td>121</td>
<td>111</td>
<td>111</td>
<td>92</td>
<td>115</td>
<td>266</td>
<td>126</td>
<td>99</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>ESP0094691049</td>
<td>2017</td>
<td>1116</td>
<td>0.18</td>
<td>59.02</td>
<td>94.30</td>
<td>2.38</td>
<td>1.35</td>
<td>1.64</td>
<td>125</td>
<td>57</td>
<td>100</td>
<td>114</td>
<td>89</td>
<td>96</td>
<td>263</td>
<td>126</td>
<td>99</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>ESP0094334816</td>
<td>2017</td>
<td>1520</td>
<td>0.24</td>
<td>28.05</td>
<td>90.17</td>
<td>1.97</td>
<td>1.36</td>
<td>1.36</td>
<td>132</td>
<td>124</td>
<td>57</td>
<td>106</td>
<td>74</td>
<td>100</td>
<td>211</td>
<td>126</td>
<td>99</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>ESP0094741024</td>
<td>2018</td>
<td>925</td>
<td>0.04</td>
<td>29.13</td>
<td>44.91</td>
<td>1.59</td>
<td>3.34</td>
<td>2.15</td>
<td>115</td>
<td>126</td>
<td>55</td>
<td>112</td>
<td>65</td>
<td>108</td>
<td>93</td>
<td>100</td>
<td>126</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>ESP0094298913</td>
<td>2019</td>
<td>672</td>
<td>0.05</td>
<td>29.14</td>
<td>35.50</td>
<td>2.73</td>
<td>1.69</td>
<td>1.18</td>
<td>118</td>
<td>53</td>
<td>123</td>
<td>63</td>
<td>90</td>
<td>107</td>
<td>263</td>
<td>126</td>
<td>99</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>ESP009429565</td>
<td>2017</td>
<td>1736</td>
<td>0.12</td>
<td>78.95</td>
<td>95.58</td>
<td>0.42</td>
<td>0.85</td>
<td>1.22</td>
<td>118</td>
<td>116</td>
<td>55</td>
<td>99</td>
<td>65</td>
<td>101</td>
<td>55</td>
<td>110</td>
<td>126</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>ESP0094293970</td>
<td>2017</td>
<td>759</td>
<td>0.13</td>
<td>49.01</td>
<td>95.03</td>
<td>1.15</td>
<td>1.4</td>
<td>0.5</td>
<td>121</td>
<td>121</td>
<td>57</td>
<td>107</td>
<td>66</td>
<td>116</td>
<td>52</td>
<td>118</td>
<td>266</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>BDM0313091544</td>
<td>2017</td>
<td>1488</td>
<td>0.08</td>
<td>45.07</td>
<td>96.96</td>
<td>0.92</td>
<td>1.92</td>
<td>0.93</td>
<td>117</td>
<td>133</td>
<td>67</td>
<td>114</td>
<td>74</td>
<td>102</td>
<td>78</td>
<td>96</td>
<td>278</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>ESP0074877908</td>
<td>2017</td>
<td>1524</td>
<td>0.16</td>
<td>72.09</td>
<td>95.59</td>
<td>0.82</td>
<td>1.21</td>
<td>1.21</td>
<td>107</td>
<td>112</td>
<td>59</td>
<td>103</td>
<td>68</td>
<td>109</td>
<td>67</td>
<td>108</td>
<td>264</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>BDM032990770</td>
<td>2017</td>
<td>1269</td>
<td>0.24</td>
<td>14.13</td>
<td>95.58</td>
<td>0.46</td>
<td>0.87</td>
<td>0.31</td>
<td>100</td>
<td>124</td>
<td>144</td>
<td>106</td>
<td>78</td>
<td>120</td>
<td>78</td>
<td>106</td>
<td>302</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>ESP0094631111</td>
<td>2017</td>
<td>1104</td>
<td>0.05</td>
<td>45.05</td>
<td>91.02</td>
<td>0.92</td>
<td>1.02</td>
<td>1.02</td>
<td>120</td>
<td>131</td>
<td>61</td>
<td>116</td>
<td>68</td>
<td>115</td>
<td>65</td>
<td>113</td>
<td>267</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>BDM0313631021</td>
<td>2017</td>
<td>783</td>
<td>0.13</td>
<td>41.16</td>
<td>42.99</td>
<td>0.91</td>
<td>2.26</td>
<td>1.33</td>
<td>124</td>
<td>131</td>
<td>74</td>
<td>120</td>
<td>78</td>
<td>114</td>
<td>80</td>
<td>86</td>
<td>269</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>ESP0094630024</td>
<td>2017</td>
<td>1138</td>
<td>0.18</td>
<td>60.11</td>
<td>94.39</td>
<td>1.29</td>
<td>1.18</td>
<td>1.15</td>
<td>119</td>
<td>119</td>
<td>53</td>
<td>122</td>
<td>61</td>
<td>105</td>
<td>68</td>
<td>110</td>
<td>270</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>ESP0094639169</td>
<td>2017</td>
<td>1113</td>
<td>0.11</td>
<td>52.08</td>
<td>45.98</td>
<td>1.45</td>
<td>1.54</td>
<td>1.24</td>
<td>124</td>
<td>116</td>
<td>57</td>
<td>105</td>
<td>65</td>
<td>107</td>
<td>111</td>
<td>88</td>
<td>276</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>ESP0094789617</td>
<td>2018</td>
<td>1455</td>
<td>0.15</td>
<td>36.02</td>
<td>92.00</td>
<td>0.46</td>
<td>1.37</td>
<td>1.65</td>
<td>116</td>
<td>128</td>
<td>52</td>
<td>113</td>
<td>61</td>
<td>109</td>
<td>52</td>
<td>100</td>
<td>263</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>ESP009459659</td>
<td>2017</td>
<td>1768</td>
<td>0.06</td>
<td>68.05</td>
<td>95.09</td>
<td>0.67</td>
<td>1.75</td>
<td>1.5</td>
<td>125</td>
<td>109</td>
<td>57</td>
<td>66</td>
<td>86</td>
<td>114</td>
<td>94</td>
<td>111</td>
<td>264</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>ESP0094631110</td>
<td>2017</td>
<td>995</td>
<td>0.14</td>
<td>50.05</td>
<td>98.09</td>
<td>1.52</td>
<td>2.07</td>
<td>1.83</td>
<td>116</td>
<td>121</td>
<td>55</td>
<td>105</td>
<td>65</td>
<td>99</td>
<td>110</td>
<td>292</td>
<td>263</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>ESP0094391473</td>
<td>2017</td>
<td>1579</td>
<td>0.27</td>
<td>36.04</td>
<td>85.98</td>
<td>1.18</td>
<td>1.16</td>
<td>0.5</td>
<td>131</td>
<td>116</td>
<td>55</td>
<td>115</td>
<td>88</td>
<td>91</td>
<td>263</td>
<td>126</td>
<td>99</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>BDM0313232772</td>
<td>2017</td>
<td>1055</td>
<td>0.37</td>
<td>77.16</td>
<td>51.90</td>
<td>1.46</td>
<td>1.4</td>
<td>1.69</td>
<td>96</td>
<td>120</td>
<td>69</td>
<td>104</td>
<td>76</td>
<td>109</td>
<td>79</td>
<td>117</td>
<td>249</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

WAGENINGEN UNIVERSITY & RESARCH

Are we ready for implementation?

Efficiency!

Ill make history by publishing the first ever genotypes for the Holstein breed. This will make Canada the first country to embark on reducing methane emissions.
• Farm LCA models
• Genetics as mitigation tool
• Policy maker and dairy chain

• International collaboration
• Standardisation of methods

• Trait definition
• Selection indices
• Breeding value estimation

• Genetic variation exists
• Genetic correlation to important traits

• Involve front runners/farmers asap
• Develop tools for effective use

Session 11: talks!
• Farm LCA models
• Genetics as mitigation tool
• Policy maker and dairy chain
Thank you for your attention

birgit.gredler-grandl@wur.nl