Assessment of Mediterranean buffalo lactation curves shape using lactation models

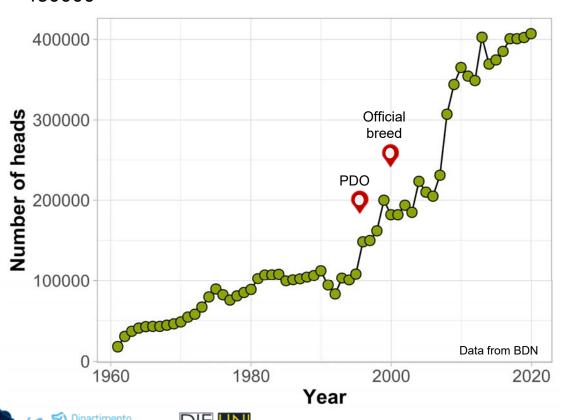
L.Trapanese¹, N.Pasquino¹, A.Salzano², and M.Hostens ^{3,4}

¹ Department of Electrical Engineering and Information Technologies, University of Naples Federico II, Italy

² Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy

³ Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghen University, 9000 Ghent, Belgium

⁴ Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, United States

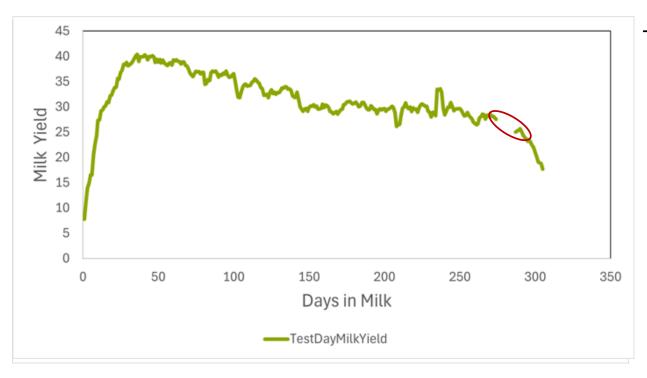


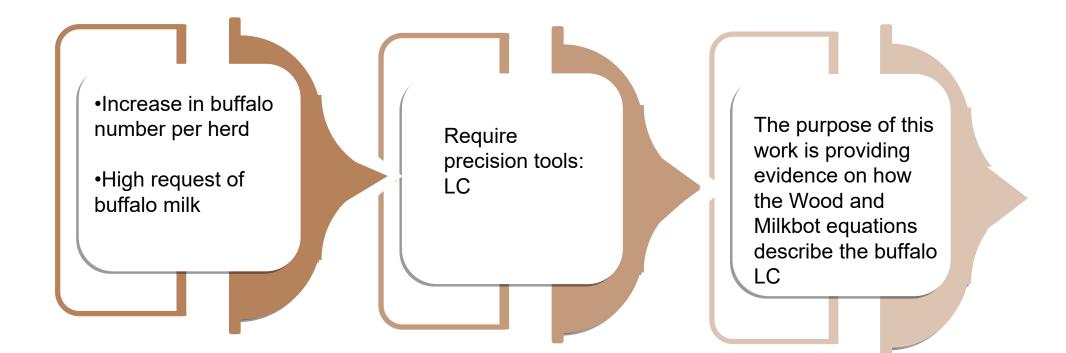
Background 1

 Buffalo sector has been constantly growing in the last years and are important producers of milk and dairy products

• From 1996 until now, there has been a growth of 173%. The number of buffalos in Italy amounts to about

430000


Mozzarella cheese as 1996 a «PDO» product. 200 «Bufala Mediterranea 0 Italiana» as a official breed 202 Mozzarella cheese is the fourth best-selling of all Italian «PDO» production


LC buffalo characteristics

Lactation Curve (LC) is graphic representation of milk yield during the length of one lactation

Total milk yield Daily milk

Aim of the work

Dataset

Final dataset:

- •295 herds
- •33368 animals
- •377437 observations
- •5 numeric features

Equations

Wood equation (Wood, 1967)

$$Y_w(t) = at^b e^{-ct}$$

- $Y_w = \text{milk yield}$,
- t = days in milk,
- **a** = magnitude,
- **b** = time to peak
- **c** = the decay.

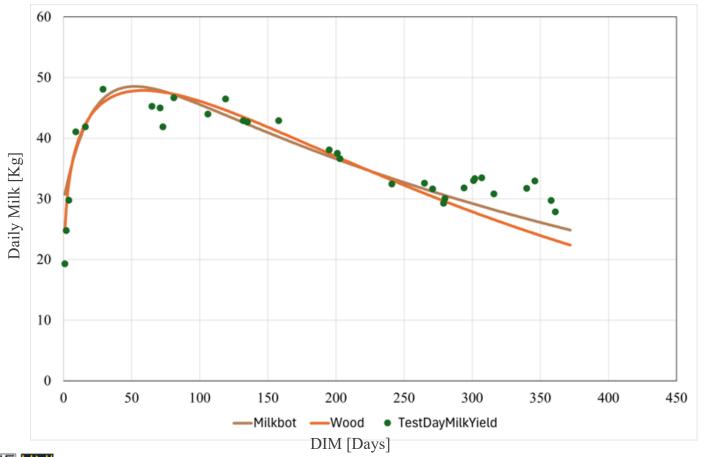
Wood. (1967). Algebraic Model of the Lactation Curve in Cattle. *Nature*, *216* (5111), 164–165. https://doi.org/10.1038/216164a0

MilkBot equation (Ehrlich, 2013)

$$Y_{mb}(t) = a \left(1 - \frac{e^{\frac{c-t}{b}}}{2}\right) e^{-dt}$$

- Y_{mb} = milk yield,
- t = days in milk,
- **a** = magnitude,
- b = time to peak
- *c* = offset
- **d** = decay

Ehrlich, J. L. (2013). Quantifying inter-group variability in lactation curve shape and magnitude with the MilkBot [®] lactation model. *PeerJ*, *1*, e54. https://doi.org/10.7717/peerj.54



Equations

Graphical comparison of Wood and Milkbot fitting

Coefficient of determination (R²)

• The performance of the models was evaluated through the coefficient of determination (R2)

$$R^2 = 1 - \frac{SS_{res}}{SS_{tot}}$$

where SS_{res} is the sum of the squared residuals and $\Box\Box_{tot}$ is the total sum of squares

Results 1

Wood model

Parity	$\overline{a} \pm \sigma_a$	$\overline{b} \pm \sigma_b$	$\bar{c} \pm \sigma_c$	$\overline{R^2} \pm \sigma_{R^2}$
1	6.1±4.2	0.30±0.30	0.005±0.003	0.72±0.26
2	7.6± 5.1	0.29±0.30	0.006±0.004	0.78±0.22
3	7.9± 5.2	0.30±0.30	0.007±0.004	0.79±0.21

- The mean values of a, b, c are consistent with the literature *
- Good R² values especially for lactations 2 and 3
- The standard deviation for each parameter and R² suggest that data are strongly variable about the mean

Khan, Z., Pasha, T. N., Bhatti, J. A., Sharif, N. R. M., Sahin, T., Naveed, S., & Tahir, M. N. (2023). Fitting Various Growth Equations to the Daily Milk Yield Data of Nili-Ravi Buffaloes and Cholistani Cows at Intake at Maintenance Levels. *Kafkas Universitesi Veteriner Fakultesi Dergisi*. https://doi.org/10.9775/kvfd.2023.29278

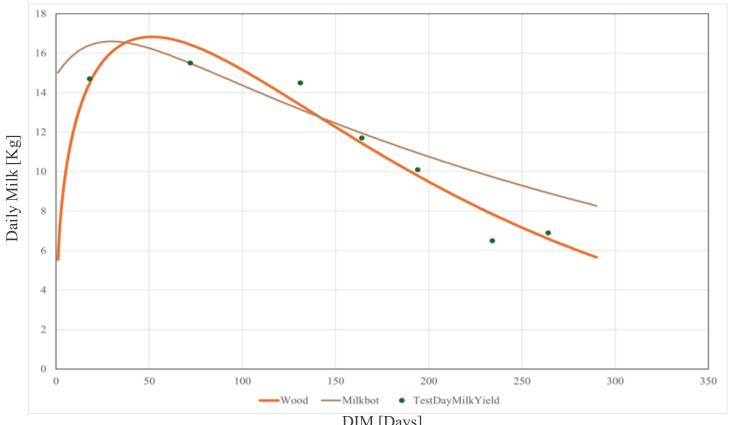
Results 2

Milkbot model

Parity	$\overline{a} \pm \sigma_a$	$\overline{m{b}} \pm m{\sigma_b}$	$\overline{c} \pm \sigma_c$	$\overline{d} \pm \sigma_d$	$\overline{R^2} \pm \sigma_{R^2}$
1	13.5±2.4	30.67±0.06	-0.4992±0.001	0.0015±0.000 1	0.58±0.26
2	15.9± 3.2	22.74±0.02	-0.7751±0.001	0.0026±0.000 3	0.69±0.22
3	17.1± 3.6	25.07±0.75	0.0039±0.002	0.0029±0.000 3	0.69±0.20

- Results seem consistent based on dairy cow parameters and their interpretation
- Milkbot performed worse than Wood in terms of R² for each lactation.

Chen, Y., Hostens, M., Nielen, M., Ehrlich, J., & Steeneveld, W. (2022). Herd level economic comparison between the shape of the lactation curve and 305 d milk production. *Frontiers in Veterinary Science*, 9. https://doi.org/10.3389/fvets.2022.997962



Results 3

Fitting of the Wood and Milkbot models on buffalo milk samples

Discussion and conclusion

This is one of the first employment of Milkbot model on buffalo cows

The first lactations achieved worse result compared to the lactations 2+.

More efforts are needed to establish more accurate priors

WKDQN#\RX

Contact: lucia.trapanese2@unina.it

