A tool to identify cows eligible for Selective Dry Cow Therapy (SDCT)

Mauro Fioretti (1), Lorenzo Pascarella (1,2), Caterina Melilli (1), Federica Luisi (1,2), Riccardo Negrini (1,2)

1Associazione Italiana Allevatori (A.I.A.), via XXIV Maggio 44, Rome, Italy

2Dipartimento di Scienze animali, della nutrizione e degli alimenti, Università Cattolica del Sacro Cuore, Via E. Parmense, 29122 Piacenza, Italy
Mastitis in Italy

- Timespan: last 2023 TD, 365 days back
 - Mean of SCC annual weighted averages: 324 K cells /ml
 - Mean of annual percentage of recorded cows with cells > 200 K /ml: 28.7%

![Monthly trend of weighted SCC Averages, 2023](image-url)
Dry period is a crucial phase for mastitis

During dry period:

- immune defenses decrease (Schukken et al., 2011)
- at the beginning, absence of physical barriers, such as keratin plugs at the level of the nipple sphincter, preventing the entry of mastitogenic agents (Schukken et al., 2011)

50% of cases of environmental mastitis in the first 100 days of lactation originate from infections contracted during the dry period (Green et al, 2002)
Prophylaxis approach: BDCT

(Blanket Dry Cow Therapy, BDCT)

• Treats all quarters with antibiotics to:
 • Eradicate existing infections at the time of dry-off.
 • Prevent new infections during the dry period.

• Use an external or internal sealant to prevent the entry of pathogens.

PROS: 😊
All cows are treated

CONS: 😞
High costs for antibiotics
High vet expenses

New EU legislation to avoid antibiotic resistance

Regulation 2019/6 on veterinary medicines:
• Article 107(1): “Antimicrobial drugs are not used systematically nor employed to compensate for poor hygiene, inadequate zootechnical practices, lack of care, or even poor management of farms.”

• Article 107(3): “Antimicrobial drugs are not used for prophylaxis, except in exceptional cases, for administration to a single animal or a limited number of animals.”
Selective Dry Cow Therapy (SDCT)

Criterion: *Treat with antibiotics only cows showing infections symptoms at dry off.*

<table>
<thead>
<tr>
<th>PROS:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Decrease dramatically the use of antibiotics (and related costs)</td>
</tr>
</tbody>
</table>

with BDCT:

- 70% of antibiotics in dairy farms are used for mastitis (van Werven, 2014)
- Of them, 40% at dry-off (Kuipers et al., 2016)

with SDCT:

- The use of antibiotic is reduced in a range 21-60% without compromising health status in next lactation (Zecconi et al 2020; Cameron et al., 2014; Kabera et al., 2019; Rowe et al., 2020a, Rowe et al., 2020b)

<table>
<thead>
<tr>
<th>CONS:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Need robust criteria to identify cows requiring treatments</td>
</tr>
</tbody>
</table>

SDCT ➔ TOOL
The tool rationale

a) DHI data to *list the candidate lactating cows to be dried-off* (pregnant / low production)

b) protocols (criteria on SCC and other info) to select cow *to be treated based on SCC history*

• The tool is free available for 14.000 dairy recorded farms and 1.4M cows through the proprietary software Si@lleva.
A two steps approach

Step 1: IDENTIFY COWS ELIGIBLE TO BE DRIED-OFF IN A SPECIFIC DATE by
 • PREGNANCY STATUS
 • MILK YIELD

Step 2: USE PROTOCOLS BASED ON DHI SCC DATA TO ELICIT SDCT COWS

 • OFFICIAL PROTOCOLS: Complying with Regional Veterinary Official protocols
 • CUSTOMIZED PROTOCOLS: Created by the user with farm-tailored criteria
Step 1: Identify dry-off eligible cow at report date:

Parameters: 1) Average Gestation Length = 283 days (fixed) 2) Average farm dry-off period (customizable by farmer) 3) Report date

1) In milk
2) Pregnant (positive diagnosis)

From conception date
1) Calculate expected calving date
2) Calculate expected dry-off date

Average farm dry-off period

\[n^\circ \text{ of days between report date and expected dry-off date} \]

\[\leq \]

\[> \]

ELIGIBL E

NOT ELIGIBLE
Step 1. Identify dry-off eligible cow at report date:

Parameters: 1) Threshold milk production \(m \) (def: 14 Kg) 2) At which \(n \) test day on start to search for low production (def. 4)

Variable: Milk yield at test day (MY)

1) Lactating cows
2) Test days \(\geq n \) (def. 4)

\[m \] (def. 14 kg) \(<\) last test day milk yield MY \(\geq m \) (def. 14 kg)

\(NOT \) ELIGIBLE

ELIGIBLE
Step 2: Protocol setting

<table>
<thead>
<tr>
<th>Protocol Code</th>
<th>Protocol Description</th>
<th># TD to use</th>
<th>SCC limit</th>
<th># TD to use</th>
<th>SCC limit</th>
<th>Average SCC</th>
<th>Mastitis Presence</th>
<th>Positive CMT</th>
<th>Positive Bacterial ex.</th>
</tr>
</thead>
<tbody>
<tr>
<td>prova</td>
<td>SCC > 100,000 Primiparous, SCC > 200 pluriparous on at least on TD on last 3 TDs</td>
<td>3</td>
<td>100</td>
<td>3</td>
<td>200</td>
<td>YES</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The number of the latest test days included

The threshold value of somatic cells for primiparous and multiparous

Screening methods

Yes= Treat if the Average number of SCC is over the threshold

No= Treat if SCC is over the threshold in at least one TD among those included
Examples

Cow M43 eligible to dry-off for pregnancy status: parity 3, Threshold SCC count: 200K, SCC result for last 3 TDs:

<table>
<thead>
<tr>
<th>Current TD</th>
<th>414K</th>
</tr>
</thead>
<tbody>
<tr>
<td>TD -1</td>
<td>245K</td>
</tr>
<tr>
<td>TD -2</td>
<td>151K</td>
</tr>
</tbody>
</table>

Average SCC = 270 K
TREAT

Cow M25 eligible to dry-off for pregnancy status: parity 1, Threshold SCC count: 100K, SCC result for last 3 TDs:

<table>
<thead>
<tr>
<th>Current TD</th>
<th>51K</th>
</tr>
</thead>
<tbody>
<tr>
<td>TD -1</td>
<td>49K</td>
</tr>
<tr>
<td>TD -2</td>
<td>22K</td>
</tr>
</tbody>
</table>

Average SCC = 40.7 K
DON'T TREAT

Cow M11 eligible to dry-off for low production: parity 1, Threshold SCC count: 100K, SCC result for last 3 TDs:

<table>
<thead>
<tr>
<th>Current TD</th>
<th>85K</th>
</tr>
</thead>
<tbody>
<tr>
<td>TD -1</td>
<td>158K</td>
</tr>
<tr>
<td>TD -2</td>
<td>309K</td>
</tr>
</tbody>
</table>

Average SCC = 184 K
TREAT

ICAR 2024 Annual Conference, Bled
The report

Eligible to be dried off

<table>
<thead>
<tr>
<th>Farm ID</th>
<th>Official ID</th>
<th>Name</th>
<th>Last lactation</th>
<th>Last TD</th>
<th>SCC prev. TDs</th>
<th>Predictions</th>
<th>SDCT</th>
<th>Treat</th>
<th>Reason Treatment</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>M43</td>
<td>IT0xxxxxxxxx7</td>
<td>GIOVANNA</td>
<td>3</td>
<td>10/06/2023</td>
<td>324</td>
<td>16.2</td>
<td>414</td>
<td>245</td>
<td>151</td>
<td>25/03/2024</td>
</tr>
<tr>
<td>M15</td>
<td>IT0xxxxxxxxx9</td>
<td>MARIA</td>
<td>3</td>
<td>25/03/2023</td>
<td>401</td>
<td>12.2</td>
<td>231</td>
<td>190</td>
<td>177</td>
<td>16/04/2024</td>
</tr>
<tr>
<td>M25</td>
<td>IT0xxxxxxxxx8</td>
<td></td>
<td>1</td>
<td>12/06/2023</td>
<td>322</td>
<td>26.0</td>
<td>51</td>
<td>49</td>
<td>22</td>
<td>29/04/2024</td>
</tr>
</tbody>
</table>

Eligible for low milk production after n (3) TDs

<table>
<thead>
<tr>
<th>Farm ID</th>
<th>Official ID</th>
<th>Name</th>
<th>Last lactation</th>
<th>Last TD</th>
<th>SCC prev. TDs</th>
<th>Predictions</th>
<th>SDCT</th>
<th>Treat</th>
<th>Reason Treatment</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>M11</td>
<td>IT0xxxxxxxxx0</td>
<td>CATERINA</td>
<td>1</td>
<td>05/10/2023</td>
<td>207</td>
<td>12.0</td>
<td>85</td>
<td>158</td>
<td>109</td>
<td></td>
</tr>
</tbody>
</table>

Protocol Details

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>prova SCC > 100.000</td>
<td>Primiparous, SCC > 200 pluriparous on at least 1 TD on last 3 TDs</td>
<td>3</td>
<td>100</td>
<td>3</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Mastitis risk class from DSCC

<table>
<thead>
<tr>
<th>DIM stage</th>
<th>SCC</th>
<th>DSCC (%)</th>
<th>Mastitis Risk Class</th>
<th>COLOUR</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIM <= 100</td>
<td><= 200.000 u/ml</td>
<td><= 66,3</td>
<td>Healthy/Normal</td>
<td>Green</td>
</tr>
<tr>
<td></td>
<td>> 200.000 u/ml</td>
<td>> 66,3</td>
<td>Suspicious/ mastitis onset</td>
<td>Yellow</td>
</tr>
<tr>
<td>100 < DIM <= 200</td>
<td><= 200.000 u/ml</td>
<td><= 69,2</td>
<td>Healthy/Normal</td>
<td>Green</td>
</tr>
<tr>
<td></td>
<td>> 200.000 u/ml</td>
<td>> 69,2</td>
<td>Suspicious/ mastitis onset</td>
<td>Yellow</td>
</tr>
<tr>
<td>DIM > 200</td>
<td><= 200.000 u/ml</td>
<td><= 69,3</td>
<td>Healthy/Normal</td>
<td>Green</td>
</tr>
<tr>
<td></td>
<td>> 200.000 u/ml</td>
<td>> 69,3</td>
<td>Suspicious/ mastitis onset</td>
<td>Yellow</td>
</tr>
</tbody>
</table>
Tool diffusion among DHI Farm in Italy

- **533** dairy farms (3.8%)
- **100K** milking cows (7%)
Conclusions

Aim of the tool:
- foster the adoption of SDCT
- help farmers/veterinarian to comply with EU indications about antimicrobial responsible use
- exploit DHI data

Cautions
- results are heavily protocols and parameters setting dependent
- information provided are based on risk analysis and not on direct diagnosis
- the tool do not replace the veterinary service