Validation of national methane mid-infrared prediction equation

Maria Frizzarin, Ben Lahart, and Donagh Berry

Teagasc, Ireland

Maria.frizzarin@teagasc.ie
Objective

<table>
<thead>
<tr>
<th></th>
<th>Number of records</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test</td>
<td>1715</td>
</tr>
<tr>
<td>Train</td>
<td>3047</td>
</tr>
</tbody>
</table>

The diagram shows the comparison between the number of records in Test and Train datasets. The Train dataset has a significantly higher number of records (3047) compared to the Test dataset (1715).
Predicting methane emissions of individual grazing dairy cows from spectral analyses of their milk samples

Donagh Berry, M. Frizzarin, B. Lahart, M. Kennedy, L. Shalloo, M. Egan, K. Starsmore, S. McParland

Teagasc, Ireland

Donagh.berry@teagasc.ie
Data

- 93,888 individual methane spot measures (>2 minutes)
 - 384 lactations from 277 dairy cows

Methane

- n\(\geq\)20
 - n\(\geq\)10
 - 0
 - n\(\geq\)10
 - +6

AM & PM Milk sample
- Yield & composition
- Spectrum
- Days post calving

AM only
- PM only
- AM+PM
- AM&PM
Approach

Four fold cross-validation

Partial least squares or neural networks

Methane = \int (\text{spectrum, days in milk, yield, fat\%, protein \%})

One farm out

Partial least squares or neural networks
Results

• $\mu = 323.4$ g/d
• $\sigma = 75.2$ g/d
• Average of 30 spot measures to ± 6 days
 • 111 minutes
• Repeatability = 28%

• Little difference
 • AM v PM, neural networks v partial least squares
• Flanking 6 days > previous 6 days > subsequent 6 days
Results

<table>
<thead>
<tr>
<th>Model</th>
<th>No spectra</th>
<th>With spectra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spectra</td>
<td>0.55 (0.07)</td>
<td>0.55 (0.06)</td>
</tr>
<tr>
<td>DIM</td>
<td>0.32 (0.13)</td>
<td>0.55 (0.06)</td>
</tr>
<tr>
<td>Yield</td>
<td>0.10 (0.18)</td>
<td>0.64 (0.05)</td>
</tr>
<tr>
<td>Composition</td>
<td>0.32 (0.13)</td>
<td>0.57 (0.06)</td>
</tr>
<tr>
<td>DIM + yield</td>
<td>0.52 (0.10)</td>
<td>0.64 (0.06)</td>
</tr>
<tr>
<td>DIM + composition</td>
<td>0.41 (0.10)</td>
<td>0.55 (0.06)</td>
</tr>
<tr>
<td>Yield + composition</td>
<td>0.32 (0.07)</td>
<td>0.62 (0.05)</td>
</tr>
<tr>
<td>DIM + yield + composition</td>
<td>0.54 (0.09)</td>
<td>0.64 (0.05)</td>
</tr>
</tbody>
</table>
Validation dataset

- Calibration
 - N = 3,047
 - From 2020 to 2022

- Validation
 - N = 1,715
 - From 2023
Validation dataset
Results

- Correlation between actual and predicted of 0.38 *
- Root mean square error of 78.76 g/d

* Correlation in the training dataset of 0.64
Results

Low 10% emitting cows

High 10% emitting cows
Results

N = 242
N = 1,218
N = 255

Methane (g/d)

> 1 sd from mean
between 1 and -1 sd from mean
< 1 sd from mean

Actual CH4 Predicted CH4
Conclusions

- Accuracy of the prediction relatively low
- Ability in identifying high and low emitting cows
- Ability in identifying groups of cows