Genome-wide associations of immune-associated traits in dairy cows

SJ Denholm, TN McNeilly, MP Coffey, GC Russell, G Banos, A Tolkamp, JE Coe, A Bagnall, MC Mitchell and E Wall

13th February 2018, Auckland, New Zealand
Introduction

- Low-cost high-throughput genotyping technology
- Higher accuracy breeding values
- Increased understanding of genetic control of economically important phenotypes (Pryce et al., 2010)
- Genome-wide association studies (GWAS) used to help researchers dissect the genetics of complex traits in many species
Introduction

Inclusion of immune response phenotypes in selection indices may be a viable option to decrease disease and improve animal health

(Abdel-Azim et al., 2005; Thompson-Crispi et al., 2012a; Mallard et al., 2015)
Objective

Can we determine genomic regions significantly associated with immune-associated traits?
Methods - Data collection

- **2010 - 2015 Sampling periods**
- **2013 - 2015 3x daily milk samples**
- **Genetic Line**
- **Diet**
- **Analysed for 17 immune-associated traits**
Methods - Data collection

<table>
<thead>
<tr>
<th>Trait</th>
<th>No. Records</th>
<th>Mean</th>
<th>Std. Dev</th>
</tr>
</thead>
<tbody>
<tr>
<td>% PBMC</td>
<td>2,266</td>
<td>58.39</td>
<td>10.24</td>
</tr>
<tr>
<td>% Eosinophils</td>
<td>2,266</td>
<td>3.61</td>
<td>3.43</td>
</tr>
<tr>
<td>% Lymphocytes</td>
<td>2,265</td>
<td>44.25</td>
<td>12.35</td>
</tr>
<tr>
<td>% Monocytes</td>
<td>2,265</td>
<td>13.99</td>
<td>8.25</td>
</tr>
<tr>
<td>% Neutrophils</td>
<td>2,266</td>
<td>37.76</td>
<td>10.10</td>
</tr>
<tr>
<td>% CD4⁺</td>
<td>2,232</td>
<td>25.52</td>
<td>6.28</td>
</tr>
<tr>
<td>% CD8⁺</td>
<td>2,260</td>
<td>11.29</td>
<td>3.42</td>
</tr>
<tr>
<td>CD4⁺:CD8⁺ ratio</td>
<td>2,232</td>
<td>2.38</td>
<td>0.73</td>
</tr>
<tr>
<td>% NKp46⁺</td>
<td>2,262</td>
<td>2.32</td>
<td>1.58</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Trait</th>
<th>No. Records</th>
<th>Mean</th>
<th>Std. Dev</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hp (milk)</td>
<td>3,561</td>
<td>83.87</td>
<td>369.79</td>
</tr>
<tr>
<td>NAbKLH (blood)</td>
<td>2,687</td>
<td>0.94</td>
<td>0.30</td>
</tr>
<tr>
<td>NAbLPS (blood)</td>
<td>3,570</td>
<td>1.15</td>
<td>0.52</td>
</tr>
<tr>
<td>TNF-α (blood)</td>
<td>3,568</td>
<td>1,841.74</td>
<td>6,435.26</td>
</tr>
<tr>
<td>Hp (milk)</td>
<td>2,667</td>
<td>0.97</td>
<td>6.39</td>
</tr>
<tr>
<td>NAbKLH (milk)</td>
<td>2,667</td>
<td>0.81</td>
<td>0.35</td>
</tr>
<tr>
<td>NAbLPS (milk)</td>
<td>2,667</td>
<td>0.34</td>
<td>0.24</td>
</tr>
<tr>
<td>TNF-α (milk)</td>
<td>2,667</td>
<td>103.29</td>
<td>375.23</td>
</tr>
</tbody>
</table>
Methods - Genotyping

• 80% of cows genotyped
 – Illumina BovineSNP50 BeadChip

• Remaining cows genotyped
 – GeneSeek GGP Bovine 150k BeadChip

• 34,143 common SNPs
Methods – Quality control

- **SNP QC applied**
 - minor allele frequency (MAF) < 0.01
 - call rate < 95%

- **Sample QC applied**
 - call rate < 85%

Post QC:
- **1,637 SNPs removed**
- **535 samples × 32,506 SNPs**
- **13 samples removed**
Methods - GWAS

- EBVs calculated via:
 \[y = Xa + Z_1b + Z_2c + e \]

- De-regressed following Garrick et al. (2009)

- dEBVs used in single marker regression via:
 \[y = \mu + Xg + e \]

Fixed effects included:
- diet group
- genetic group
- lactation week
- assay technique
- \(Y \) x \(Z \) interaction
- random permanent environmental
- random additive genetic
- random residual

\[y \] = trait observations
\[EBV \] = de-regressed following Garrick et al. (2009)
\[dEBV \] = used in single marker regression via:
\[y = \mu + Xg + e \]

- Cow fitted as random effect
 - permanent environmental effect of cow
 - also fitted (repeated measures)

\[c > 0 \] is the fraction of genetic variance not explained by markers.
Methods - GWAS

- **EBVs** calculated via:

 \[y = Xa + Z_1b + Z_2c + e \]

- De-regressed following **Garrick et al. (2009)**

- **dEBVs** used in single marker regression via:

 \[y = \mu + Xg + e \]

- \(y \) : vector of dEBV
- \(\mu, g, e \) : overall mean, effect of SNP (coded 0, 1, 2) and residual error, respectively
- \(X \) : design matrix allocating records to SNP effects

Bonferroni correction

\[= \frac{0.05}{\text{number of SNPs}} \]

False Discovery Rate (FDR)

\[= \frac{\text{number of tests} \times P\text{-value}}{\text{number of significant SNPs}} \]
Methods – Functional analysis

- **Ensembl**\(^1\) *Bos taurus* UMD3.1 assembly
- Genes within ±500kbp of SNP significantly associated with immune-associated traits
- Database for Annotation, Visualization and Integrated Discovery (DAVID\(^2\)) v6.8

\(^1\) https://www.ensembl.org, Yates et al. (2016)
\(^2\) https://david.ncifcrf.gov, Huang et al. (2009)
Results – Genetic analysis
Results – GWAS
Results – Functional analysis

- 9 clusters containing 122 genes were observed
- Significant associations with biological pathways also observed such as systemic lupus erythematosus

Clusters and Enrichment Scores

<table>
<thead>
<tr>
<th>Cluster</th>
<th>Number of genes</th>
<th>Enrichment Score</th>
<th>Cluster names</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>3.6</td>
<td>phospholipases</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>3.1</td>
<td>Interleukins</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>2.4</td>
<td>Histone cluster proteins</td>
</tr>
<tr>
<td>4</td>
<td>54</td>
<td>1.1</td>
<td>olfactory receptor</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>1.0</td>
<td>homeobox</td>
</tr>
<tr>
<td>6</td>
<td>20</td>
<td>0.4</td>
<td>zinc finger protein</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>0.3</td>
<td>myelin associated glycoprotein</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>0.3</td>
<td>transmembrane proteins</td>
</tr>
<tr>
<td>9</td>
<td>5</td>
<td>0.3</td>
<td>transmembrane proteins</td>
</tr>
</tbody>
</table>

‡ geometric mean (-log scale) of member's p-values in corresponding annotation cluster, used to rank biological significance. The top ranked annotation groups most likely have consistent lower p-values for their annotation members (Huang et al., 2009)
Conclusions

- Interesting and potentially novel genomic regions observed
- Highlighted several SNP significantly associated with various immune-associated traits
 - notably SNP associated with natural antibodies on chr17
- Identified potentially useful SNPs for enriching genotyping
The authors express their gratitude to the Biotechnology and Biological Sciences Research Council (BBSRC) for funding this research (grant no. BB/ K002260/1).

The Langhill experiment at Crichton Dairy Research Centre, Eileen Wall, Tom McNeilly, and George Russell are supported by the Scottish Government Rural Affairs, Food and the Environment (RAFE) Strategic Research Portfolio 2016-2021.

We also thank Ian Archibald & all SRUC Farm staff and technicians.
Thanks for listening!
Leading the way in Agriculture and Rural Research, Education and Consulting