

JWAS: Just another Whole-genome Analysis Software

Hao Cheng, Rohan Fernando, Dorian Garrick

JWAS

Julia for Whole-genome Analysis Software

Bayesian Regression

- MCMC
- Bayesian Alphabet

Basic Analysis

- Linear Mixed Models
- Multivariate Analysis

Genomic Data

- Genomic Prediction
- Genome-wide Association Studies

Julia Linear Mixed Models

Multivariate

Univariate

Missing Phenotypes

Whole-genome Data

Bayesian Alphabet

Pedigree

Incomplete Genomic Data

1.comple
2.routine
3."reproc

• participate, maintain, extend 103 Computing time (hours) 102 10^{1} 10^{5} 10= WAS GenSel R-implementation

Bayesian Linear Mixed Models (BLMM)

BLMM	Marker Effect Model		Breeding Value Model		
incomplete	Non-Mixture Priors	RR-BLUP ss mt BayesA ss mt			
Genomic Data	Mixture Priors	BayesB ss mt BayesCπ ss mt BayesR ss mt	Genomic BLUP ss mt		

user interface of JWAS

In cell 2 below, the JWAS package is loaded, as well as the DataFrames package for reading text files.

```
In [2]: 1 using JWAS, DataFrames
```

In cell 3 below, the data and pedigree information is loaded on line 1-2. The first several rows of data is shown on line 3.

```
In [3]: 1 data = readtable("phenotypes.txt")
2 pedigree = get_pedigree("pedigree.txt");
3 head(data)
```

Finished!

Out[3]:		animal	trait1	trait2	age	sex	litter	dan
	1	01	150.0	13.0	3	М	b	D1
	2	03	40.0	5.0	4	F	a	D1

Out[3]:

	animal	trait1	trait2	age	sex	litter	dam
1	01	150.0	13.0	3	М	b	D1
2	03	40.0	5.0	4	F	а	D1

- In cell 4 below, the non-genomic part of the model equation for a 2-trait analysis is defined.
 - The effects fitted for trait 1 are the intercept, sex, direct genetic effects and maternal genetic effects.
 - The effects fitted for trait 2 are the intercept, sex, age, the interaction between sex and age and direct genetic effects.

```
In [4]:
```

```
1 model_equations = "trait1 = intercept + sex + litter + animal + dam
2 trait2 = intercept + sex + age + age*sex + animal";
```


In cell 5 below, the model is built given the model equation in cell 3 and residual variance R. By default, all effects in model
are fixed and factors. On line 2, the effect age is defined as covariates. On line 3, the effect litter is defined as random with
variance G1. On line 4, direct genetic effects and maternal genetic effects are fitted as animal and dam with variance G2
and numerator relationship matrix from pedigree. (Codes to define G1,G2, G3, R are skipped for demonstration purpose)

• In cell 6 below, genoimc part of the model is defined with genotypes file and variance G3. The format of genotypes file is:

```
In [6]: 1 add_genotype(model, "genotypes.txt", G3)
```

In cell 7 below, a multi-trait BayesC analysis is performed with model and data defined in cell 1 to 5.

```
In [7]: 1 runMCMC(model,data,methods="BayesC")
```

More information is available here. For help on JWAS, type ?JWAS and press enter.

Future plan

BLMM	Marker Effect Model		Breeding Value Model		
incomplete Genomic Data	Non-Mixture Priors	RR-BLUP ss mt BayesA ss mt			
	Mixture Priors	BayesB ss mt BayesCπ ss mt BayesR ss mt	Genomic BLUP ^{ss mt}		

<> Code () Issues 3 (1) Pull requests 0

JuliaBox beta

Run Julia from the Browser. No setup

IJ[♣]

IJulia

Create IJulia Notebooks and share them. >_

Console

Use in-browser terminal emulator to fully control your Docker instance.

via Google Drive.

Google Drive Sync & Share

Collaborate with others.
Sync notebooks and data Setup folders to sync with remote git repositories.

Julia for Whole-genome Analyses Software Edit Add topics 7 364 commits ິນ 1 branch 7 releases 2 3 contributors ♠ GPL-2.0 Create new file Upload files Find file Clone or download New pull request Branch: master ▼ workshops 12 hours ago reworkhow update documentation 12 hours ago docs update documentation add H matrix for GBLUP 3 days ago test 🚞 allow MTBayeB to work as MTBayesA 10 months ago GBLUP now work .gitignore a year ago change require julia for travis .travis.yml 12 days ago LICENSE Update and rename LICENSE.md to LICENSE 3 years ago README.md Create README.md 8 months ago REQUIRE update REQUIRE 12 days ago

Projects 0 Wiki

O Unwatch → 4 ★ Unstar 7 V Fork 9

Questions?

- http://QTL.rocks
- My group is Recruiting!

SOFTWARE BOOKS

Software

open-source software tools for statistical genetics

JWAS

Julia implementation of Whole-genome Analyses Software using Univariate and Multivariate Bayesian Mixed Effects Model

XSim

Simulation of Descendants from Ancestors with Sequence Data

PedModule

Pedigree-based Mixed Effects Models

SSBR

Bayesian regression analyses combining information from genotyped and non-genotyped individuals

Books

interactive Jupyter notebooks for statistical genetics

Subscribe

subscribe to updates from QTL.rocks, subscribe to QTL.rocks

workshops

workshops about statistical genetics

More

QTL.rocks is created and maintained by Hao Cheng