Meiotic Recombination in Ruminant Livestock Species

A.M. Rodriguez¹, K.M. Davenport¹, J.B. Glaze, Jr.¹, S.D. McKay², C.A. Gill³ & B.M. Murdoch*¹

¹University of Idaho, Department of Animal and Veterinary Science, ID, United States
²University of Vermont, Department of Animal and Veterinary Science, VT, United States
³Texas A&M University, Department of Animal Science, College Station, TX, United States
Goals

1. To quantify, characterize and compare the number of meiotic recombination/crossover (CO) between beefalo, cattle and sheep.

2. Test the relationship between the number of CO and chromosome length.

3. Examine the chromosomal structural integrity.
Meiotic Recombination

- Exchange of genetic material contributes to genetic diversity
 - NOT random
 - Associated with the number of chromosome arms
 - Interference
 - “Hotspots”
 - Sexual dimorphism

- Ensure faithful chromosome segregation
Karyotype: Chromosome Arms

Cattle

Sheep
Mammalian Recombination

Sex averaged linkage map comparison to number of chromosome arms in different mammalian species.

Figure adapted from Coop & Przeworski (2007), Nature Reviews Genetics 8.
Meiosis

- Ensure faithful chromosome segregation

- Mis-segregation or non disjunction leads apoptosis in males

http://www.unal-and-brar-labs.org/unal-cdk/
Method: Cytogenetics

• Allows us to characterize recombination directly
 • Has distinct advantages compared to linkage mapping
 • Reference genome
 • Large number of progeny

• Determine structural integrity
Recombination in prophase (pachytene cell) observed by immunofluorescence.

Recombination observed in gametes are lower due to independent assortment of chromatids.

Average crossover counted in offspring = 1.5
Immunofluorescence

Synaptonemal Complex (SC)
SYCP3
MLH1
Crossover (CO)
Number of COs

Each dot represents the number of COs from individual spermatocyte, black bars represent breed mean, and the letters above denotes significant differences (P<0.01).

<table>
<thead>
<tr>
<th>Breed</th>
<th>Number of Spermatocytes</th>
<th>Average CO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beefalo</td>
<td>713</td>
<td>42.6(^A) ± 0.70</td>
</tr>
<tr>
<td>Cattle</td>
<td>1017</td>
<td>44.7(^B) ± 0.79</td>
</tr>
<tr>
<td>Sheep</td>
<td>2749</td>
<td>62.5(^C) ± 0.78</td>
</tr>
</tbody>
</table>
Chromosome Length & CO Numbers
Length of Chromosome & CO Number

Beefalo (61 cells, $r=0.53$)
Cattle (86 cells, $r=0.57$)
Sheep (340 cells, $r=0.70$)
Chromosome Length & CO Position

- Locations of CO on SCs with 2 CO
Chromosomal Defect Scoring

A. Missing Crossover
 SYCP3
 MLH1

B. Rings Gaps
 XY
 SYCP3
 MLH1
Chromosomal Defect Scoring

<table>
<thead>
<tr>
<th>Defect</th>
<th>Beefalo</th>
<th>Cattle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>74.6(^\text{A})</td>
<td>83.6(^\text{B})</td>
</tr>
<tr>
<td>Rings</td>
<td>10.3(^\text{A})</td>
<td>3.8(^\text{B})</td>
</tr>
<tr>
<td>Missing CO</td>
<td>8.9(^\text{A})</td>
<td>6.2(^\text{A})</td>
</tr>
<tr>
<td>Gaps</td>
<td>6.3(^\text{A})</td>
<td>6.2(^\text{A})</td>
</tr>
<tr>
<td>Total Defects</td>
<td>25.4(^\text{A})</td>
<td>16.4(^\text{B})</td>
</tr>
</tbody>
</table>

Letters denote significant differences (P<0.01)
Summary

• Sheep exhibit a significantly greater number of COs and cattle exhibit more COs in comparison beefalo.

• Larger chromosomes tend to have a greater number of COs.

• Beefalo spermatocytes have a greater number of structural defects.
Acknowledgements

Funding

• This material is based upon work that is supported by the National Institute of Food and Agriculture, U.S. Department of Agriculture, award numbers USDA-NIFA-IDA1566 and USDA-NIFA-2016-09952.

Lab

• Rebekka Sawyer
• Hannah Jaeger
• Dominic De La Torre
• Eric Robinson

Testicular Samples

• Pure Country Harvest
• University of Idaho Vandal Meats
• University of Idaho Sheep Experiment Station
• C&L Meat Locker
Questions?
Number of COs in Cattle

<table>
<thead>
<tr>
<th>Bulls</th>
<th>Spermatocytes</th>
<th>Average CO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charolais</td>
<td>112</td>
<td>48.9A ±0.54</td>
</tr>
<tr>
<td>Gelbvieh</td>
<td>97</td>
<td>47.6A ±0.58</td>
</tr>
<tr>
<td>Jersey</td>
<td>100</td>
<td>48.6A ±0.39</td>
</tr>
<tr>
<td>Angus 1</td>
<td>100</td>
<td>43.3B ±0.33</td>
</tr>
<tr>
<td>Angus 2</td>
<td>100</td>
<td>43.4B ±0.30</td>
</tr>
<tr>
<td>Angus 3</td>
<td>101</td>
<td>41.5B ±0.36</td>
</tr>
<tr>
<td>Angus 4</td>
<td>100</td>
<td>42.4B ±0.37</td>
</tr>
<tr>
<td>Angus 5</td>
<td>100</td>
<td>41.7B ±0.41</td>
</tr>
<tr>
<td>Angus 6</td>
<td>97</td>
<td>43.2B ±0.61</td>
</tr>
<tr>
<td>Angus 7</td>
<td>98</td>
<td>46.5A ±0.52</td>
</tr>
</tbody>
</table>