Genome-wide association for facial eczema tolerance in New Zealand sheep

KM McRae, SM Clarke, TL Johnson, HJ Baird, S-AN Newman, KG Dodds, JC McEwan & SJ Rowe

Facial Eczema (FE)

Long-running animal health challenge of the upper part of New Zealand

Metabolic disease caused by toxic spores of the fungus *Pithomyces chartarum*

- Results in liver and bile duct damage
- Sub-clinical FE = Liver damage
- Clinical FE = Photosensitivity

Both clinical & sub-clinical FE → decreased production & reproduction

Geographic Spread of Facial Eczema

Controlling Facial Eczema

Preventative treatment with zinc

Tolerance to FE is a heritable trait in sheep (h² = 0.44)¹

- Measured sporidesmin challenge, measure liver damage 21 days afterwards (GGT21)
- Generate breeding values

A commercial testing program, Ramguard, was set up in the 1980's to provide this service

Dosing 800-1,000 rams each year

Original GWAS

Single SNP association tests

- •GRAMMAR analysis in GenABEL
- Imputed genotype data (50K & HD)
- •3,763 animals with FE phenotypes
- → SNP in significant regions on 15K chip

Animal selection

Utilised the RamGuard dataset¹

- GGT levels 21 days after a measured sporidesmin challenge (GGT21)
- Flocks needed ≥45 animals with recorded GGT21
- Contemporary group ≥4 animals, and ≥30% animals with elevated GGT21 (> 70)

Animals selected based on genotype availability

Illumina OvineLD BeadChip (15,000 markers)

1,931 animals from 39 flocks, born between 2010 and 2014

Association analyses

- 1) Efficient Mixed-Model Association eXpedited (EMMAX) analysis
 - Phenotypic data (GGT21)
 - Fitting contemporary group (flock.year.sex.GGT21mob)
 - Identity-by-state (IBS) and first two principal components fitted
- 2) Genotype association test
 - Residuals obtained from ASReml (fitting contemporary group)
 - first two principal components fitted

SNP effects fitted in ASReml

Association analyses

Chromosome 15

Chromosome 15

Top SNP

Beta - globin locus

Ovine beta globin

HapA and HapB both contain the ovine β^A gene (*HBB*)

- •Differ by at least 7aa → considered allelic variants
- •Haemoglobin from HapA (Hb-A) and HapB (Hb-B) sheep is distinguishable electrophoretically

HapA has been associated with:

- ↓ mastitis and ↑ parasite resistance in crossbred ewes¹
- •Resistance to photosensitisation (alveld) as a result of ingestion of *Nathercium ossifragum*²

Haemoglobin and FE

SNP on either side of locus are in LD

- May be predictive of haemoglobin haplotype
- Needs to be validated

Potential role of haemoglobin type in the response to FE

- Not straightforward
- •Toxicity of sporidesmin believed to be through the generation of superoxide radicals
- •Conflicting evidence links between haemoglobin type and antioxidant enzymes

Summary

Validation of previous QTL, discovered using HD genotypes

Peak on chromosome 15 at the β-globin locus

- •Explains 8% of the additive genetic variance
- •Haemoglobin haplotypes have previously been associated with variation in a number of health related traits in sheep
- •Warrant more investigation into their role in tolerance to FE

Acknowledgements

