Prediction of blood B-hydroxybutyrate content in early-lactation **New Zealand dairy cows** using milk infrared spectra

V. Bonfatti¹, S.-A. Turner², B. Kuhn-Sherlock², C. Phyn², J. Pryce^{3,4}

🖂 valentina.bonfatti@unipd.it

Dept. Comparative Biomedicine & Food Science, University of Padova, Italy
DairyNZ Ltd., New Zealand
Agriculture Victoria, AgriBio, Australia
La Trobe University, Australia

Hyperketonemia

Blood β-hydroxybutyrate (BHB) concentration ≥ 1.2 mmol/L

- Increased occurrence of clinical ketosis, other health disorders, reduced fertility (Compton et al., 2015)
- Herd-level incidence ~68% in the first 5 wk of lactation (Compton et al., 2015)

- National infrared predictions of milk BHB not yet available in NZ
- An alternative is to predict blood BHB concentration

Dairynz 💆

AGRICULTURE VICTORIA

Objective

To evaluate the ability of milk IR spectra to predict

the concentration of BHB in blood

the occurrence of hyperketonemia

in pasture-grazed, early-lactation New Zealand dairy cows

For large-scale phenotyping for selective breeding

► for on-farm management purposes

Dairynz

Dataset

- ▶ 553 cows (HO and HOxJE)
- > 2 farms (seasonal-calving, pasture-based dairy system)
- Milk infrared spectra collected once a week → Milko-Scan FT1 (Foss Electric A/S, Hillerød, Denmark)
- Blood "prick" sample taken 3 times/wk (1-5 wk of lactation)
- Sampling at 7 am, before fresh allocation of pasture and supplementary feed
- ► BHB in blood measured using FreeStyle Optimum[™] Blood Glucose Monitoring System (Abbott Diabetes Care Ltd., UK)
- June October 2016

Data analysis

- Average of the 2 measures of blood BHB closest to spectra acquisition
- The regions of the spectra between 1,628 and 1,658 cm⁻¹, 3,105 cm⁻¹ and 3,444 cm⁻¹, and 2,966 to 5,010 cm⁻¹ were removed
- After outlier elimination
 - 1,910 spectra + BHB
 - from 542 cows

Spectra transformed using EMSC + 1st derivative

Dairynz

AGRICULTURE VICTORIA

Quantitative prediction models

- PLS regression with a 10-fold cross-validation (R package PLS, Mevik & Wehrens, 2007)...
- ► 2/3 of the cows in calibration and 1/3 in validation, randomly selected → 10 replicates
- All the records from a cow were in either the calibration or the validation subset

	N Cows N spectra	
Calibration	360	1,267
Validation	182	643

Dairy_{Nz}≥

AGRICULTURE VICTORIA

Fitting of quantitative models

Average fitting statistics (SD) obtained across 10 calibration-validation partitions

	Ν	#terms	RMSEP	R ²
Calibration	1,267 (11)	24 (4.1)	0.28 (0.01)	0.56 (0.03)
Validation	643 (11)		0.32 (0.03)	0.50 (0.05)

Dairynz

AGRICULTURE

VICTORIA

di Padova

- N: number of records in the datasets
- #terms: number of optimal partial least square components
- RMSEP: root mean squared error of prediction

Discriminant models

- Partial least squares discriminant analysis (PLS-DA; Lê Cao et al., 2011), using the R package mixOmics (Rohart et al., 2017)
- 1.2 or 1.4 mmol/L used as a diagnostic reference
- Models developed and tested on the same calibration-validation sets created for testing the quantitative prediction models

Statistics:

- Global accuracy
- Sensitivity
- Specificity

- Area under the curve (AUC)
- Positive predicted value
- Negative predicted value

Dairy_{NZ}≥

AGRICULTURE VICTORIA

Thresholds BHB > 1.2 mmol/L $BHB \ge 1.4 \text{ mmol/L}$ Calibration Validation Calibration Validation Prevalence, % 10.1 10.8 6.3 7.1 Global accuracy, % 84.9 84.0 81.8 87.4 Sensitivity, % 81.9 76.2 85.2 76.3 Specificity, % 84.3 82.5 87.5 85.4 Positive predicted value, % 34.6 31.5 28.2 37.1 Negative predicted value, % 97.6 98.9 98.0 98.0 AUC, % 94.8 90.9 91.6 88.0

Università degli Studi di Padova

Dairynz

AGRICULTURE VICTORIA

	Thresholds				
	BHB \geq 1.2 mmol/L		BHB \geq 1.4 mmol/L		
	Calibration	Validation	Calibration	Validation	
Prevalence, %	10.1	10.8	6.3	7.1	
Global accuracy, %	84.0	81.8	87.4	84.9	
Sensitivity, %	81.9	76.2	85.2	76.3	
Specificity, %	84.3	82.5	87.5	85.4	
Positive predicted value, %	37.1	34.6	31.5	28.2	
Negative predicted value, %	97.6	98.9	98.0	98.0	
AUC, %	91.6	88.0	94.8	90.9	

Thresholds BHB > 1.2 mmol/L $BHB \ge 1.4 \text{ mmol/L}$ Calibration Validation Calibration Validation Prevalence, % 10.1 10.8 6.3 7.1 Global accuracy, % 84.9 84.0 81.8 87.4 Sensitivity, % 85.2 81.9 6.2 6.3 Specificity, % 85.4 84.3 87.5 32.5 28.2 Positive predicted value, % 37.1 34.6 31.5 Negative predicted value, % 97.6 98.9 98.0 98.0 AUC, % 94.8 90.9 91.6 88.0

Università degli Studi di Padova

Dairynz

AGRICULTURE VICTORIA

Thresholds BHB > 1.2 mmol/L $BHB \ge 1.4 \text{ mmol/L}$ Calibration Validation Calibration Validation Prevalence, % 10.1 10.8 6.3 7.1 Global accuracy, % 84.9 84.0 81.8 87.4 Sensitivity, % 81.9 76.2 85.2 76.3 Specificity, % 84.3 82.5 87.5 85.4 Positive predicted value, % 37.1 **4.6** 31.5 28.3 Negative predicted value, % 97.6 98.9 98.0 98.0 AUC, % 88.0 94.8 90.9 91.6

Dairynz

AGRICULTURE VICTORIA

Limitations

- Blood metabolites vary considerably in time (reliability of the reference measures)
- Possible time lag between the release of metabolites in blood and modification of milk composition
- Reference values produced by the ketone meter are one-digit values (discrete vs continuous variation)
- The dataset included samples from 2 farms and 1 season only (pasture quality and quantity impact on cow performance)

AGRICULTURE VICTORIA

Conclusions

The developed prediction models might be used to provide breeding organizations with indicator traits for ketosis

Potential use as a management tool in New Zealand

Infrared spectroscopy will not provide accurate measurements at an individual level, but it can provide information at herd level Dairy

AGRICULTUPE

What's next

- More samples and farms!
- Measures of other blood metabolites
- Estimates of genetic parameters of the predicted blood BHB and its relationship with production and reproduction
- Genomic predictions for BHB concentration
- Application of other existing calibration equations for milk or blood ketone bodies to New Zealand milk samples ?
- Join reference data from different countries to create more robust equations ?

Dairynz

AGRICULTURE VICTORIA

Acknowledgements

AGRICULTURE VICTORIA

Università degli Studi di Padova

MIRfor**PROFIT**

- Funding from New Zealand dairy farmers through DairyNZ Inc. (grant no. RD1405) and the New Zealand Ministry of Business, Innovation and Employment (grant no. DRCX1302)
- Financial support from the MIRforProfit project funded by the Australian Government Department of Agriculture and Water Resources
- Financial support from University of Padova