Cow’s Own Worth
Test day model and 305 day predictions

Margaret Kelleher, John McCarthy and Ross Evans
mmkelleher@icbf.com
11th February 2018
C.O.W. = Cow’s Own Worth
Expected profit from:

Current Lactation
- Production
- Health (SCC)
- Fertility (calving date)
- Management
- Maintenance

Net Replacement Cost
- Cull cow value
- Replacement cost

Future Lactations
- Production
- Health
- Beef
- Calving
- Management
- Maintenance
- Fertility
- Descendants

+ predictions on fertility, survival and SCC performance
For more details on C.O.W.

Poster session
Theory to Application
Tomorrow 9.30 – 10.00 am

Implementation of the C.O.W. decision support tool

M.M. Kelleher¹, D.P. Berry², P.R. Amer³, A. Cromie¹, P. Owens¹ & R. Evans¹

Introduction

• Rank cows on expected profitability
• Aid in **culling and retention** decisions
• Possible due to ICBF’s centralised database
Introduction

Cow’s Own Worth (C.O.W.)
• Researched and published 2015 (Kelleher et al., 2015 JDS)
• Trialled on commercial herds 2016 & 2017
• Implemented October 2017
• Currently uses 305D model solutions for production traits

Test Day Model (TDM)
• TDM genetic evaluation submitted to Interbull test run September 2017
• TDM implemented in domestic evaluation December 2017
• Moved from the 305D model for production traits

Question
What effect do TDM evaluation solutions have on the accuracy of the C.O.W. rankings of dairy females???
Materials and methods

Data
- Milk yield
- Fat
- Protein

Alternative cow ranking indices
- 305D and TDM evaluations
- Phenotypic performance
- Spring calving herds

Validation dataset
- Genetic model ranking
- 305D model ranking
- Test day model ranking

Validation phenotype
n = 108,827
Materials and methods

Genetic model ranking

\[\sum_{t=1}^{3} \epsilon_t \times (EBV_t) \]

305D model ranking

\[\sum_{t=1}^{3} \epsilon_t \times (EBV_t + Gen.\ het_t + Gen.\ rec_t + Perm\ env_t) \]

Test day model ranking

\[\sum_{t=1}^{3} \epsilon_t \times (EBV_t + Brd\ sp.\ het_t + Brd\ sp.\ rec_t + Perm\ env_t) \]
Results: Milk yield

Difference between top 25% and bottom 25%

<table>
<thead>
<tr>
<th>Model</th>
<th>kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genetic model</td>
<td>547</td>
</tr>
<tr>
<td>305D model</td>
<td>633</td>
</tr>
<tr>
<td>Test day model</td>
<td>801</td>
</tr>
</tbody>
</table>

Milk yield (kg)

Quartiles

- Top 25%
- Second quartile
- Third quartile
- Bottom 25%

- Genetic model
- 305D model
- Test Day Model
Results: Fat yield

Difference between top 25% and bottom 25%

<table>
<thead>
<tr>
<th>Model</th>
<th>kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genetic model</td>
<td>30</td>
</tr>
<tr>
<td>305D model</td>
<td>34</td>
</tr>
<tr>
<td>Test day model</td>
<td>37</td>
</tr>
</tbody>
</table>

![Fat yield graph](image)
Results: Protein yield

Difference between top 25% and bottom 25%

<table>
<thead>
<tr>
<th>Model</th>
<th>kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genetic model</td>
<td>26</td>
</tr>
<tr>
<td>305D model</td>
<td>29</td>
</tr>
<tr>
<td>Test day model</td>
<td>33</td>
</tr>
</tbody>
</table>
Results: Monetary value

Difference between top 25% and bottom 25% and milk price for each model

<table>
<thead>
<tr>
<th>Group</th>
<th>Price (€)</th>
<th>Genetic model</th>
<th>305D model</th>
<th>Test Day Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milk</td>
<td>-0.040</td>
<td>-22.53</td>
<td>-26.07</td>
<td>-32.98</td>
</tr>
<tr>
<td>Fat</td>
<td>4.066</td>
<td>123.77</td>
<td>137.24</td>
<td>150.66</td>
</tr>
<tr>
<td>Protein</td>
<td>6.653</td>
<td>171.83</td>
<td>189.88</td>
<td>217.63</td>
</tr>
<tr>
<td>Total (€)</td>
<td></td>
<td>273.07</td>
<td>301.05</td>
<td>335.31</td>
</tr>
</tbody>
</table>

- The difference between top 25% and bottom 25% using TDM is **€335 per cow** per lactation
- Worth **€8375** in a 100 cow herd
- €34 per cow per lactation improvement between the 305D model and Test Day Model
Analysis by component

Validation accuracy and slope between phenotypic production traits and both the 305D and Test Day Model

<table>
<thead>
<tr>
<th>Traits</th>
<th>305D</th>
<th>TDM</th>
<th>305D</th>
<th>TDM</th>
<th>305D</th>
<th>TDM</th>
<th>305D</th>
<th>TDM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milk (kg)</td>
<td>0.455</td>
<td>0.462</td>
<td>0.152</td>
<td>0.308</td>
<td>1.718</td>
<td>1.552</td>
<td>2.078</td>
<td>0.564</td>
</tr>
<tr>
<td>Fat (kg)</td>
<td>0.323</td>
<td>0.334</td>
<td>0.148</td>
<td>0.310</td>
<td>1.262</td>
<td>1.164</td>
<td>2.056</td>
<td>0.591</td>
</tr>
<tr>
<td>Protein (kg)</td>
<td>0.351</td>
<td>0.341</td>
<td>0.146</td>
<td>0.313</td>
<td>1.454</td>
<td>1.331</td>
<td>2.053</td>
<td>0.523</td>
</tr>
</tbody>
</table>

- Breeding values accuracy very similar
- Accuracy doubles for **TDM permanent environment** effects and production traits
- Improvements in the validation bias as measure by the slope for TDM over 305D model
Conclusions

• C.O.W. currently uses 305D model evaluation solutions

• Using TDM production solutions in C.O.W. have shown **favourable outcomes** due to more accurate prediction of future phenotypic performance of production traits

 • The **permanent environment** effects from TDM account for the majority of the improvements

 • However the method of handling these needs more **refinement**