Genetic architecture of resistance to virulent footrot in New Zealand Merino

H.W. Raadsma¹, S.F. Walkom², B. Sharland³, C. Esquivelzeta-Rabell², D.J. Brown², K.L. Bunter², M. Ferguson³
Multi-factorial disease

Bacteria
- Virulence: Benign, Virulent
- 19 serogroups & sub-types: A,B,C,D,E,F,G,H,I,M

Host
- Susceptibility: Res, Sus
- Management: limited & short term, Genetic variation

Environment
- Predisposition/transmission
Field study
Genetic variation
Virulent Footrot

72 flocks inspected
Predominantly Merino/Merino types

Footrot scores and flock prevalence

- Score 0: Clean and normal
- Score 1: Water maceration
- Score 2: Ovine interdigital dermatitis
- Score 3: Early footrot
- Score 4: Advanced footrot
- Score 5: Chronic footrot

Prevalence %
Sampling Case-Control

Each flock
2 inspections/ challenge

N = 40-80

N = 5836 sampled

N = 40-80
Genotype 5,008 sheep & impute to 51,713 SNP after QC

Final analyses- matched genotypes to phenotypes
Flock prevalence 30:70%, Merino types only
N=3,208 37 flocks

Model: logit FR (0,1)= Flock (observer), breed type, sex, age, GRM , residual

Heritability
Chromosome Heritability
QTL location-GWAS
Positional candidate
Heritability 0.41 (se0.04)

Chromosomal Heritability- OBS vs EXP
GWAS Outputs – Case / Control study

GRM = Fitted, Restricted to flock Ratio 30:70, fixed effects = flock, sex, breed, age class

<table>
<thead>
<tr>
<th>snp_num</th>
<th>snp_name</th>
<th>chromosome</th>
<th>position</th>
<th>snp_est</th>
<th>snp_est_err</th>
<th>t_value</th>
<th>p_value</th>
</tr>
</thead>
<tbody>
<tr>
<td>48429</td>
<td>OAR23_27112379.1</td>
<td>23</td>
<td>27112379</td>
<td>-0.1213420</td>
<td>0.0165304</td>
<td>-7.34051</td>
<td>2.663673e-13</td>
</tr>
<tr>
<td>48430</td>
<td>OAR23_27233801_X.1</td>
<td>23</td>
<td>27233802</td>
<td>0.1224890</td>
<td>0.0186583</td>
<td>6.56487</td>
<td>6.022067e-11</td>
</tr>
<tr>
<td>48427</td>
<td>s58349.1</td>
<td>23</td>
<td>27011021</td>
<td>0.0678792</td>
<td>0.0178452</td>
<td>3.80377</td>
<td>1.450803e-04</td>
</tr>
<tr>
<td>48453</td>
<td>OAR23_28768759.1</td>
<td>23</td>
<td>28768759</td>
<td>0.0626619</td>
<td>0.0169762</td>
<td>3.69116</td>
<td>2.268262e-04</td>
</tr>
<tr>
<td>47319</td>
<td>OAR22_24529089.1</td>
<td>22</td>
<td>24529089</td>
<td>0.0656930</td>
<td>0.0184299</td>
<td>3.56447</td>
<td>3.697362e-04</td>
</tr>
<tr>
<td>48421</td>
<td>OAR23_26291258.1</td>
<td>23</td>
<td>26291258</td>
<td>-0.0557828</td>
<td>0.0164934</td>
<td>-3.38214</td>
<td>7.275714e-04</td>
</tr>
</tbody>
</table>
Haploview and impact of QTL markers

2 SNPs not close >>>> high likelihood of recombination between “key gene” & significant SNPS

<table>
<thead>
<tr>
<th>Trait</th>
<th>Markers fitted</th>
<th>Oar 23 Heritability</th>
<th>se</th>
<th>Residual genome heritability</th>
<th>se</th>
<th>Full Genome heritability</th>
<th>se</th>
</tr>
</thead>
<tbody>
<tr>
<td>FR (0,1)</td>
<td>0 fitted</td>
<td>0.14</td>
<td>(0.04)</td>
<td>0.27</td>
<td>(0.05)</td>
<td>0.41</td>
<td>(0.04)</td>
</tr>
<tr>
<td>FR (0,1)</td>
<td>2 fitted</td>
<td>0.12</td>
<td>(0.04)</td>
<td>0.27</td>
<td>(0.05)</td>
<td>0.39</td>
<td>(0.04)</td>
</tr>
</tbody>
</table>

Significant QTL but
Relatively small effect
High Residual Va
GWAS-positional candidates

GRM = Fitted, Restricted to flock Ratio 30:70, fixed effects = flock, sex, breed, age class

Manhattan Plot Chromosome 23

<table>
<thead>
<tr>
<th>snp_num</th>
<th>snp_name</th>
<th>chromosome</th>
<th>position</th>
<th>snp_est</th>
<th>snp_est_err</th>
<th>t_value</th>
<th>p_value</th>
</tr>
</thead>
<tbody>
<tr>
<td>48429</td>
<td>OAR23_27112379.1</td>
<td>23</td>
<td>27112379</td>
<td>-0.1213420</td>
<td>0.0165304</td>
<td>-7.34051</td>
<td>2.663673e-13</td>
</tr>
<tr>
<td>48430</td>
<td>OAR23_27233801_X.1</td>
<td>23</td>
<td>27233802</td>
<td>0.1224890</td>
<td>0.0186583</td>
<td>6.56487</td>
<td>6.022067e-11</td>
</tr>
</tbody>
</table>

rs407911045 =OAR23:25972928
rs430746746 =OAR23:26109761

GSG 1-4 Desmoglein genes
DSG1-4 Candidate genes

Desmoglein genes

D nodosus fimbriae proteases
Conclusions

- Resistance Virulent FR - Heritable & polygenic
 - selective breeding Merino feasible
- Major QTL OAR23
 - but does not account for all variation
 - Needs validation & fine mapping
- Best option for gEBV – relationship+QTL+snp effects
 - See Walkom et al –these proceedings
- DSG gene family suitable candidates
Acknowledgements

- NZ Merino inc, NZ Primary industries & New Zealand Merino Co $$$
- Many NZ Merino sheep breeders
- The NZ Merino inc field staff and veterinarians
- Dr Chris Mulvaney
- Assoc prof Imke Tammen