

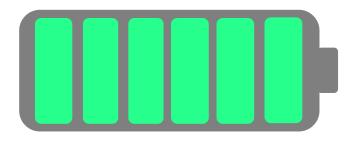
ASSOCIATION OF MILK MIR-DERIVED BODY

ENERGY TRAITS WITH FERTILITY

PARAMETERS IN COWS

February 2018

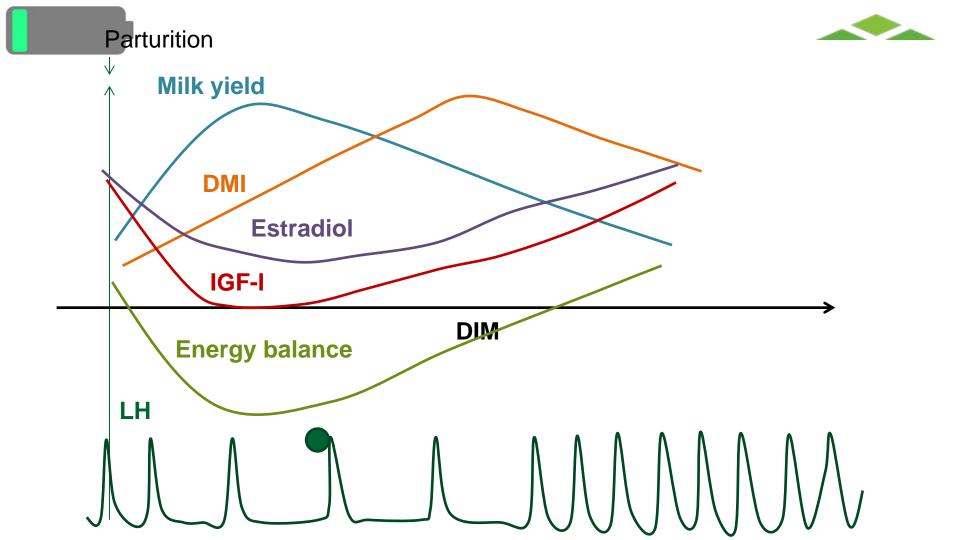
S. Smith¹, M. Coffey¹, E. Wall¹


¹ SRUC, Edinburgh, EH9 3JG, UK

Leading the way in Agriculture and Rural Research, Education and Consulting

Acknowledgements

Take home



Background

Summary

Results

Break down of approach

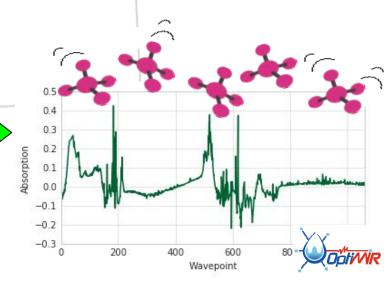
S. Smith¹, M. Coffey¹, E. Wall¹

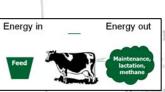
¹ SRUC, Edinburgh, EH9 3JG, United Kingdom

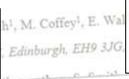
Daves and the same of Carried

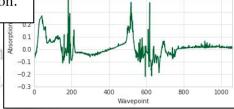
S. Smith¹, M. Coffey¹, E. Wall¹

¹ SRUC, Edinburgh, EH9 3JG, United Kingdom

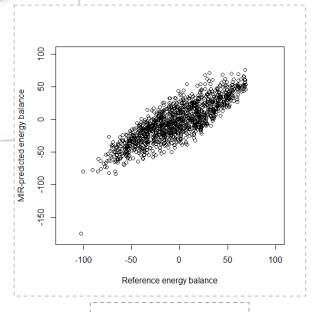

December - anthony C. Conit





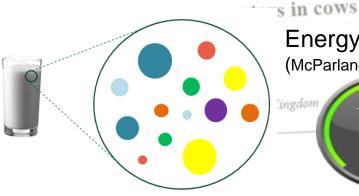


For work at Langhill


Partial Least Squares Analysis

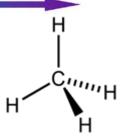
Predicted Energy balance

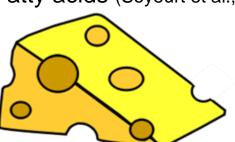
Validation



R = 0.84 SEC = 22.7 SDEP = 19 RPD = 1.6

Acidity (de Marchi et al., 2009)


Energy profiles (McParland et al., 2011)


pH Chart

Methane emissions (Dehareng et al., 2012)

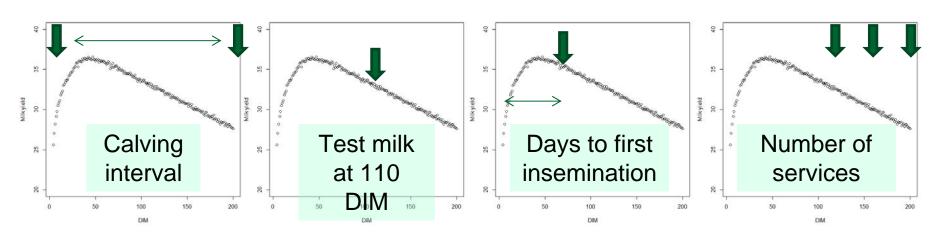
Fatty acids (Soyeurt et al., 2011

Milk proteins (Rutten et al. 2011)

Pregnancy (Laine et al., 2013)

Cheese making properties (de Marchi et al., 2013)

S. Smith¹, M. Coffey¹, E. Wall¹


¹ SRUC, Edinburgh, EH9 3JG, United Kingdom

Danasantina anthony C. Cariti

- Obtained through collaborations/ pipeline for national evaluations
- Contemporary records (animal, lactation) with milk MIR records

- Animals with fertility records and mid-infrared spectral data
- DIM < = 200
- Holstein-Friesian cows
- Fertility edits according to Wall et al., (2003)
- 1st 200 daughters retained from all sires ordered by birth date
- At least 3 test day per animal/ lactation
- First EB record within 30 DIM
- At least 5 records per herd year season of calving
- Fertility record aligned with first EB record (unless otherwise stated)

Association of milk MIR-derived body energy traits

with fertility parameters in cows

E. Wall!

19 3JG, United Kingdom

Full dataset

Bivariate

EB records from:

$$1.0 < = x < = 50 DIM$$

$$2.50 < x < = 100 DIM$$

$$3.100 < x < = 150 DIM$$

$$4.150 < x < = 200 DIM$$

with single fertility record (joined on min DIM record)

Bivariate

S. Smith¹, M. Coffey¹, E. Wall¹

¹ SRUC, Edinburgh, EH9 3JG, United Kingdom

Dansanding andham C Cariel

- Uni-/bi-/tri-variate linear animal models of MIR predicted energy balance, milk yield and fertility traits
- Fixed effects: lactation, month of calving, age @ 1st calving, DIM (for MIR traits)

Association of milk MIR-derived body energy traits

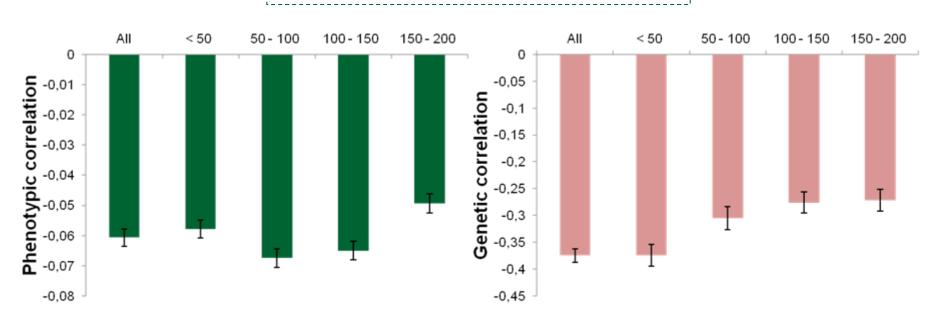
with fertility parameters in cows

No. herds	3,313	_
No. animals	108,018	
No. lactations	4	ed Kingdom
No. records	709,142	

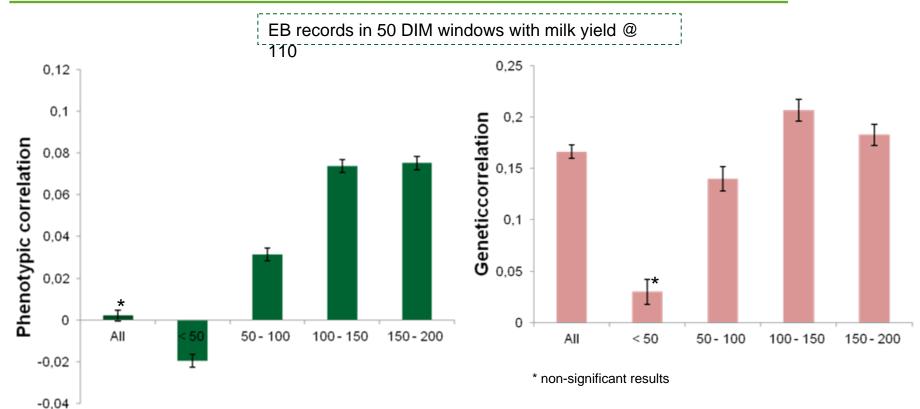
Trait	Average	Stdev	Min	Max
Energy balance	-3.3	29.4	-120.1	86.1
Calving interval	390.5	57.0	301.0	599.0
Test milk 110 days	32.9	9.1	5.0	60.0
Days to first service	71.7	28.7	20.0	200.0
Number of inseminations	2.1	1.3	1.0	7.0
Age calving 1st lactation	27.0	4.2	18.0	47.0

Range of birth dates	Sept 2004 - Dec 2014
Range of calving dates	Feb 2013 - Jul 2016
Range of MIR-derived EB records	Mar 2013 - Feb 2017

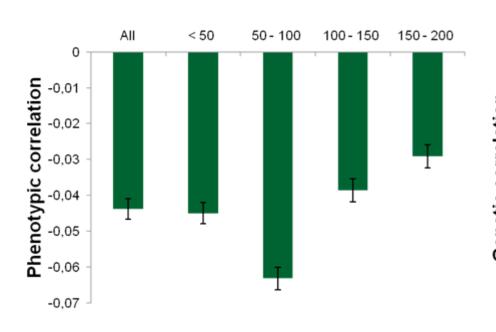
Avg. no. EB records per animal/lactation	5.6
Avg. no. of lactations per animal	1.1

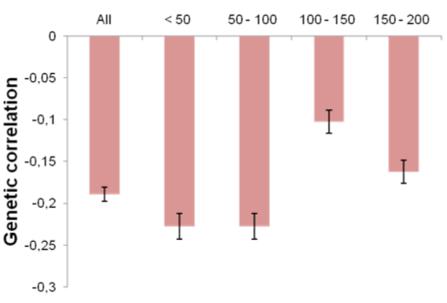

+ pedigree with 364,435 animals generations 0 to 4

Results- EB & calving interval


EB records in 50 DIM windows with fertility records

Results - EB & milk@110

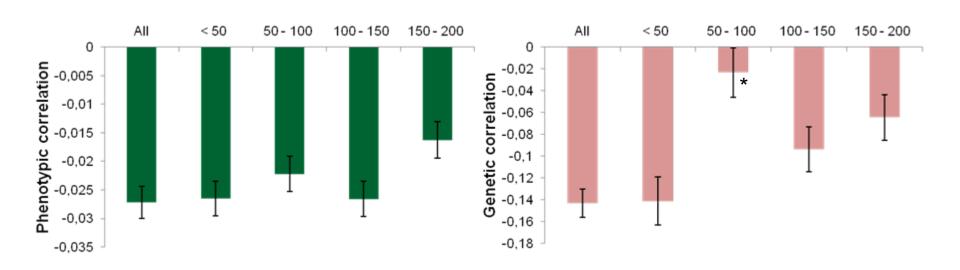




Results – EB & days to 1st service

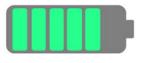
SRUC

EB records in 50 DIM windows with fertility records



Results – EB & No inseminations

EB records in 50 DIM windows with fertility records


^{*} non-significant results

Summary

- The genetic correlation between EB and milk yield is weakest earliest in lactation and its strength increases with increasing DIM
- The genetic correlation between EB and fertility is highest (and unfavourable)
 earliest in lactation and its magnitude decreases later in lactation
 - Correlation of EB with fertility traits (-0.37 w/ CI; -0.2 w/ DFS; -0.14 w/ NI) comparable with literature e.g.
 - r_g BCS & CI = -0.36 (Pryce et al., 2001)
 - r_g BCS & Int 1stServ = -0.47 to -0.3 (Berry et al., 2003)
 - r_g BCS & NI = -0.34 to -0.17 (Berry et al., 2003)

Take home messages

- Mid infra-red analyses of milk is providing an increasing suite of phenotypes which can be generated as part of routine milk recording and used in routine genetic evaluations
- 2. Selecting for improved energy balance profile could help to improve fertility given the genetic correlation between the traits
- Next steps: further study the correlations between MIR energy traits and fitness traits within and across lactations as lifetime longitudinal profiles are built up

Leading the way in Agriculture and Rural Research, Education and Consulting