The importance of farm systems thinking in animal recording

Bruce Thorrold S&I Leader, DairyNZ

Situation

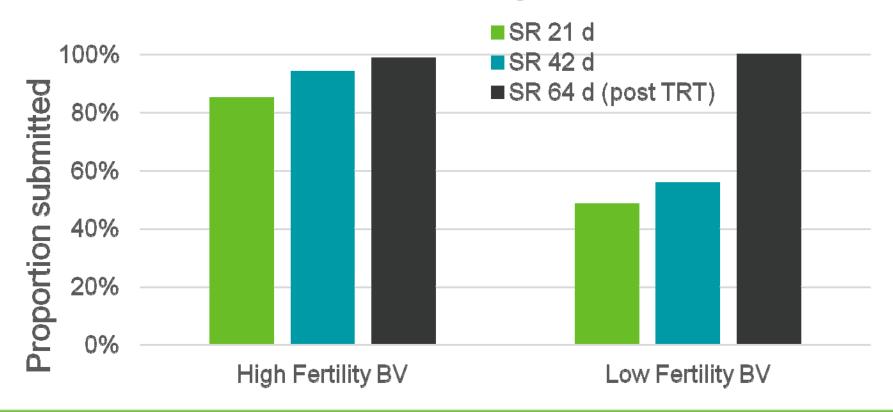
- Quality phenotypes are foundation
- New traits fertility & health
 - Managed & (maybe) recorded at individual cow level
 - Assisted by new data capture
- Move towards dedicated 'data herds'
 - High quality pheno & genotypes

NZ context

- Data quality is variable in National Herd
 - Expansion, large herds, efficient staffing
 - Value in basing AE on subset of herds?
- Importance of reproductive performance
 - \$500M/yr lost opportunity
 - On-going issue for farmers
 - Large research investment in divergent lines
 - Test phenotype against BVs
 - Identify better predictor traits
 - Understand physiology of genetics

Sire impact on fertility where herd reproductive performance is, on average, high, mid or low.

Calving Rate (42 days): The percentage of a sire's daughters who calved within the first 42 days of calving, within their respective herds.



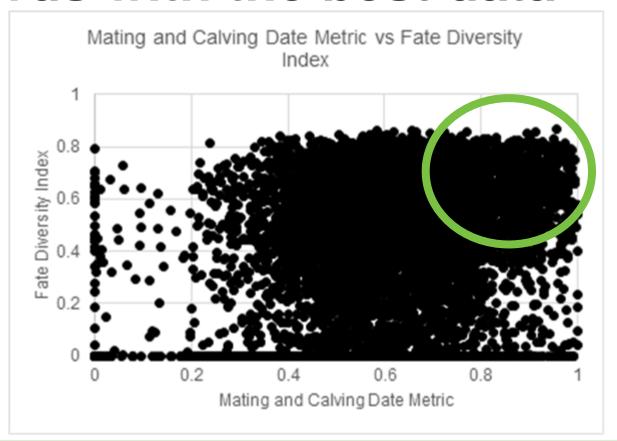
Why?

- Do low performing herds suffer from mis-management?
 - Poor oestrus detection
 - Poor Body Condition Score

 Or high performing herds benefit from intervention?

Divergent Fertility Lines % Submitted for mating

Why??


On-Farm Intervention

- All heifers
 - Calve early longer to mating
 - Separate heifer mob might be milked OAD
- Non-cycling or low BCS heifers
 - Milk OAD might be in separate mob
 - Preferentially fed
 - Run with bull
 - CIDR/PG

My contention

- Divergent lines show a large difference in fertility
 - Greater than predicted by modelling
- Quite possible that the smaller genetic effect in high performing herds is due to management intervention
 - including at individual cow level
 - and unrecorded
- So, likely that the genetic effect in mid-lower herds is closer to the 'true' signal
 - Economic cost
 - Genetic standard deviation & heritability

Herds with the best data

Two questions

- What data do we need to have from within a herd?
 - Preferential treatment
 - Hormonal treatments
- Which herds do we want data from?
 - Representative current situation
 - Low intervention future?