The potential of genotyping pooled DNA to leverage commercial phenotypes for genetic improvement of beef cattle

Genomic selection is now a reality in beef cattle, and require a large group of animals to be individually genotyped.

Genotyping pooled DNA:

- Group animals based on the Phenotype similarity, mix the biological material and genotype the entire group only once.

Could we build a reference population in a economical way? (first look on traits only recorded in the commercial sector)
Herd

CG - A

CG - B

CG - C

Extremely -

Extremely +

25 individuals in each pool sorted based on the phenotype

25 individuals in each pool sorted based on the phenotype
Packing plant

25 individuals in each pool sorted based on the phenotype

Extremely -
Extremely +

25 individuals in each pool sorted based on the phenotype
The real cost of fat (Mike McMorris, 2013)

Marbling and Yield grade

High IMF / Low IMF

Material and Methods

157,870 registered American Angus animals:
- Ultrasound intramuscular fat phenotypes
- Another set of economically important traits (ongoing)
- 87K imputed genotypes

Simulated the pools by averaging the allele frequencies on
individually genotyped animals in a group
Material and Methods

157,870 registered American Angus animals: Ultrasound intramuscular fat phenotypes
Another set of economically important traits (ongoing)
87K imputed genotypes

Genotypes of pooled DNA samples:

SNP genotypes in the pools were categorized into “0”, “1”, and “2” genotypes based on their B-allele frequencies:
1) if the B-allele frequency was \(\leq 0.3 \), then SNP genotype was assigned to a “0”
2) if the B-allele frequency was \(>0.3 \) and \(\leq 0.7 \), then SNP genotype was assigned to “1”
3) if the B-allele frequency was \(>0.7 \) and \(\leq 1.0 \), then SNP genotype was assigned to “2.”

(Reverter et al., 2016)
157,870 original phenotypes

Top 1,000 PCTIMF

Bottom 1,000 PCTIMF

Each set of 1,000 animals subdivided into 40 groups of 25 individuals

(1000 Low and 1000 High IMF)

40 Pools
25 animals Low IMF

40 Pools
25 animals High IMF
All sires genotyped
Sire-progeny relationship

Sires genotyped
No relationship previously identified

40 H + 40 L as reference population to obtain predictions for the sires

Genomic analyses of tropical beef cattle fertility based on genotyping pools of Brahman cows with unknown pedigree.

Abstract
We introduce an innovative approach to lowering the overall cost of obtaining genomic EBV (GEBV) and encourage their use in commercial extensive herds of Brahman beef cattle. In our approach, the DNA genotyping of cow herds from 2 independent properties was performed using a high-density bovine SNP chip on DNA from pooled blood samples, grouped according to the result of a pregnancy test following their first and second joining opportunities. For the DNA pooling strategy, 16 to 26 blood samples from the same phenotype and contemporary group were allocated to pools. Across the 2 properties, a total of 183 pools were created representing 4,164 cows. In addition, blood samples from 309 bulls from the same properties were also taken. After genotyping and quality control, 74,584 remaining SNP were used for analyses. Pools and Individual DNA samples were related by means of a “hybrid” genomic relationship matrix. The pooled genotyping analysis of 2 large and independent commercial populations of tropical beef cattle was able to recover significant and plausible associations between SNP and pregnancy test outcome. We discuss 24 SNP with significant association ($< 1.0 \times 10^{-6}$) and mapped within 40 kb of an
Material and Methods

157,870 original phenotypes

Top 1,000 PCTIMF

Bottom 1,000 PCTIMF

Validation
Step 1

AAA weekly National cattle evaluation IMF EPD

Highest 30 sires IMF EPD

Lowest 30 sires IMF EPD

Cor (DGV from GBLUP-pool, EPDs at Angus)
Clustered the genotypes before and after pooling

Individual genotypes
(1000 Low and 1000 High IMF)

Pool (40 High + 40 Low)
(25 individuals each)

- Highest Sires based on EPD
- Lowest Sires based on EPD

1000 H, 1000 L, 30H, 30L

40 Pools H, 40 Pools L, 30H, 30L
Clustered the genotypes before and after pooling

2 Pools
(1000 High + 1000 Low)

1 Pool
(1000 Highest IMF)

1 Pool
(1000 Lowest IMF)
2 pools approach:
cor(difference in sires genomic relationship with the high and the low groups, EPDs) = 0.858

cor((dataResults$HIGH - dataResults$LOW), dataResults$EPD_Bull)

80 pools approach - GBLUP: Cor(DGVs,EPDs) = 0.895
Despite pooling based on 1,000 animals only (2 groups) or with 80 groups, PCA plots clearly showed the distinction between pools, sire groups and the similarity of high sires to high pools and low sires to low pools.

For PCTIMF, different pattern for other traits!
What are the factors causing this issue?

Data issue? (NO)
Variance components re-estimated at Angus and at Project level

Trait structure (80K vs SNPs associated)
Even under similar h2, cluster pattern could be different
How many markers affecting the trait, how many Chrs?
Which GWAS method to select markers?
What is the information available for each GWAS study?
How many animals? Extremes?
% Phenotypic variance explained by the markers?
Switching the project focus ...

- Deeply investigation on GWAS to understand the trait architecture
- PCTIMF Pool Cluster pattern 80K vs Phenotypes
GWAS using different reference sizes (extremes or not for each trait)

157,870 original phenotypes

<table>
<thead>
<tr>
<th>Normal selection</th>
<th>Extremes selection</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,000 animals</td>
<td>1,000 animals</td>
</tr>
<tr>
<td>2,000 animals</td>
<td>2,000 animals</td>
</tr>
<tr>
<td>5,000 animals</td>
<td>5,000 animals</td>
</tr>
<tr>
<td>10,000 animals</td>
<td>10,000 animals</td>
</tr>
</tbody>
</table>
Threshold after multiple test – 1% Bonferrroni (Other tests were also performed)
Pooling is an effective way to investigate new traits at a very low cost.

Pooling based on all the medium/high density markers may require the identification of SNPs after GWAS.

Trait architecture must be carefully investigated even with similar heritability before applying DNA pooling.
.: Acknowledgments

Support since August 2017 – JP 16/19514-2