

10.1.2 Test categories

(after C. Device Composition and Environmental Performance test (ICAR))

D. Field Validation of Animal Identification Devices

Field validation of Animal Identification Devices is a voluntary service for national Competent Authorities or other service users, other than manufacturers or their agents. The field validation service is a quality verification service to ensure that devices available in the relevant market(s) remain compliant with the appropriate ISO and ICAR test protocols. Field validation does not lead to certification of the devices. The procedures are described in Section 10.9.

<table>
<thead>
<tr>
<th>Test category</th>
<th>Test description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application</td>
<td>Application (for any kind or combination of identification devices)</td>
</tr>
<tr>
<td></td>
<td>Laboratory test</td>
</tr>
<tr>
<td>Conformance ISO 24631-1</td>
<td>Transponder performance (granting of manufacturer code)</td>
</tr>
<tr>
<td>Performance ISO 24631-3</td>
<td>Transponder performance</td>
</tr>
<tr>
<td>Composition and environmental performance</td>
<td>Extended laboratory test (for any kind or combination of identification devices)</td>
</tr>
<tr>
<td>Field validation</td>
<td>Reduced test (limited test for RFID devices and preliminary assessment for conventional ear tags)</td>
</tr>
</tbody>
</table>

10.7.4 Definitions

10.7.4.1 Certification code

A certification code is an alpha-numeric code consisting of "Certified" followed by three numbers. The certification code is used to identify and register an ear tag model that has successfully passed the testing procedure. This code may be embossed on all ICAR certified ear tags for official identification. The placement of the certification code on the ear tag should conform to the relevant jurisdictional requirements in whatever locality the ear tag is sold.

Delete “C” (for certified”) and replace with “A”.

10.7.5.2.1 Manufacturer requirements

At the commencement of the Preliminary assessment the manufacturer must deliver:

1. A sample of 20 ear tags marked with the reference printing applied using the same technique and style as used (or intended to be used) in the commercially marketed tags. Note: Tags used in this phase are likely to be destroyed during testing.

2. An additional 10 male components (pins) used to check reusability of broken and / or unfastened female ear tags.

3. Two pairs of tag applicators or equivalent devices supplied for the application of tags to animals.

Replace ‘120’ with ‘130’ in point 1.
Delete point 2.

10.7.5.2.3 Locking mechanism checks

The primary purpose of these tests is to verify that the male to female locking mechanism, once correctly applied using the supplied applicator, cannot be subsequently dismantled in such a way that would allow the tag to be re-used. A locked ear tag should be tamperproof so tampering with the locked tag will render the tag unusable.

‘... that would allow the tag or one of the tag parts to be re-used. A locked ear tag should be tamperproof so tampering with the locked tag will render the tag unusable. …’

10.7.5.2.5 Resistance of the locking system

The 80 ear tags of Group 1 will be divided into four groups of 20 tags. These four groups will be subjected to increasing forces to determine the force required to cause breakage or unfastening of the ear tag. The forces will be applied at a speed rate of 500 mm/min. The force applied to cause breakage or unfastening of each ear tag will be recorded.

- Group 1: axial test at ambient conditions (21°C ± 2°C)
- Group 2: axial test at 55°C ± 2°C, the forces will be applied immediately after the tags are removed from the heating or climatic chamber
- Group 3: transverse test at ambient conditions (21°C ± 2°C)
- Group 4: transverse test at 55°C ± 2°C, the forces will be applied immediately after the tags are removed from the heating or climatic chamber.

Requirements

- Broken or unfastened tags must not be re-usable.
- At ambient conditions, axially tested tags designed to be used in cattle shall not break or unfasten with the application of a force lower than 280 Newton.
- At ambient conditions, axially tested tags designed to be used in sheep and/or goats shall not break or unfasten with the application of a force lower than 200 Newton.
- The number of tags unlocked without breakage or sustaining permanent damage during the transverse test is recorded, and broken or unfastened tags must not be re-usable.

Delete sentence in the first paragraph – it’s doubled to the first in “Requirements”.
Delete “or unfasten” in bullet points 2 and 3.
Delete last bullet point in “Requirements”.

‘Requirements

- None of the ear tags - neither male nor female part - must be re-usable. Male pin tips must break off and remain within the female caps (locking gap).
- At ambient …’
10.7.5.3.4.3 Evaluation of the resistance of the locking system

30 new, untreated ear tags, 30 artificially aged ear tags and 30 ear tags submitted to the damp heat and cold treatment will be subjected to increasing forces to determine the force required to cause breakage or unfastening of the ear tag.

The test is performed at -25°C (± 2°C), 21°C (± 2°C) and 55°C (± 2°C) combined with 50% RH (when the temperature is greater than 0°C) with 10 ear tags from the three treatment variations. The forces will be applied at a rate of 500 mm/min immediately after the tags are removed from the climatic chamber. The force applied to cause breakage or unfastening of each ear tag will be recorded.

Broken or unfastened tags must not be re-useable. At 21°C (± 2°C), no breakage or unfastening of an untreated ear tag should occur in:

- tags designed to be used in cattle with the application of a force lower than 280 Newton
- tags designed to be used in sheep and / or goats with the application of a force lower than 200 Newton

Additionally, the distortion occurring in the ear tag at the time of breakage or unfastening will be recorded during the tensile tests as an indicator for any changes in the mechanical properties of the plastic after exposure to the artificial ageing and the damp heat/cold treatments.

‘… will be recorded.

Requirements

- None of the ear tags – neither male nor female part – must be re-useable. Male pin tips must break off and remain within the female caps (locking gap).
- At 21°C (…), no breakage should occur in:
 - …
 - …
- The minimum breaking force applies to devices irrespective of treatments (artificial ageing, damp heat and cold).’
Delete “C” (for certified”) and replace with “A”.

Replace ‘120’ with ‘130’ in point 1.
Delete point 2.

‘… that would allow the tag or one of the tag parts to be re-used. A locked ear tag should be tamperproof so tampering with the locked tag will render the tag unusable. …’
Delete sentence in the first paragraph – it’s doubled to the first in “Requirements”. Delete “or unfasten” in bullet points 2 and 3. Delete last bullet point in “Requirements”.

'Requirements'

- None of the ear tags - neither male nor female part - must be re-usable. Male pin tips must break off and remain within the female caps (locking gap).

- At ambient …’
Delete sentence in the first paragraph – it’s doubled to the first in “Requirements”. Delete “or unfasten” in bullet points 2 and 3.

‘Requirements

- None of the ear tags - neither male nor female part - must be re-usable. Male pin tips must break off and remain within the female caps (locking gap).

- At ambient …’

10.8.5.3.5.3 Resistance to tensile loading

This test applies to RFID ear tags only. This test is done using 30 new ear tags, 30 artificially aged tags and 30 tags submitted to damp heat treatment. The test is performed at -25°C (± 2°C), 21°C (± 2°C) and 55°C (± 2°C) combined with 50% RH (when the temperature is greater than then 0°C) with every 10 ear tags from the three treatment variations.

To test the tensile strength of the locking mechanism the ear tag is affixed to a test jig simulating its application and attempts are made to remove the ear tag by subjecting it to increasing forces. The class 1 tensile test machine shall operate at a speed rate of 500 mm/min and be capable of generating loads of up to 1,000 N.

An increasing load will be applied in axial direction. The maximum load and the effect(s) of the tensile force on the appearance and/or efficacy of the ear tag will be recorded. Broken or unfastened tags must not be re-usable.

‘Requirements

- At ambient conditions (21°C ± 2°C), ear tags designed to be used in cattle shall not break or unfasten with application of a force lower than 280 Newton.

- At ambient conditions (21°C ± 2°C), ear tags designed to be used in sheep and / or goats shall not break or unfasten with the application of a force lower than 200 Newton.

- The minimum breaking force applies to devices irrespective of treatments (artificial aging, damp heat, etc.)

‘… will be recorded.
Requirements

- None of the ear tags – neither male nor female part – must be re-usable. Male pin tips must break off and remain within the female caps (locking gap).
- At ambient conditions (21°C … ‘

Delete “or unfasten” within the bullet points 1 and 2.

SECTION 10.9 – FIELD VALIDATION OF ANIMAL IDENTIFICATION DEVICES

10.9.1 Introduction

ID device field validation is a voluntary service for national Competent Authorities or other service users, other than manufacturers or their agents. The field validation service is a quality verification service to ensure that devices available in the relevant market(s) remain compliant with the appropriate ISO and ICAR test protocols. Field validation does not lead to certification of the devices.

10.9.2 Steps for the field validation of animal identification devices

- The applicant (Competent Authority or other service user) fills in the application form (Annex B5/C4), signs it and sends it to manufacturers@icar.org.
- The sample devices are collected from the local market stock by the applicant – not by the manufacturer.
- After receipt of the samples by the test laboratory, ICAR notifies the respective manufacturer about the field validation request.
- Devices are tested against the current ICAR standards and the results compared with original or earlier results for the same devices by a certified laboratory designated by ICAR. The applicant may also request or specify additional field validation test protocols, provided these are defined in other existing ISO or ICAR higher level test protocols.
- The test results are compiled into a confidential report, which is property of the applicant.
- ICAR will not disclose information about which devices are being or have been tested from which countries/markets.

10.9.3 Sampling protocol

- Devices should be collected by the service user, organisation or body making the request. It is a basic requirement that the device samples are obtained from the local market stock, with batch ID details given, and not from the manufacturer or his local agent.
- The number of device samples required to be submitted for testing are as follows*:
 - For RFID devices (testing of transponder): 10 transponders
 - For conventional ear tags or external RFID devices (testing of external material): 120 ear tags, plus additional 10 male components (pins).
 (* or as differently specified by Service-ICAR)
- After receipt of the samples by the test laboratory but before the test begins, ICAR will notify the respective manufacturer about the field validation request and seek confirmation from the
manufacturer that the device obtained for field validation from the specific country or market, is indeed a device that the manufacturer recognises as being or having been marketed in that country.

10.9.4 Testing protocol

- The Competent Authority or service user making each request is responsible for the intervals at which they require field validation to be carried out.
- Device(s) will be tested against the current ICAR standards and the results compared with original or earlier results for the same device(s) by a certified laboratory designated by ICAR.
- A basic device field validation test will be carried out by using:
 - The Limited Test protocol for the RFID conformance tested devices. (Section 10.2.4 Procedures for verifying the ISO conformance of transponders transponders)
 - The Preliminary Assessment protocol for the material performance of the tested devices. (Section 10.7.5.2 Preliminary assessment)
- Additional Testing: The service user may also request or specify additional field validation test protocols, beyond those specified in the Limited Test protocol or Preliminary Assessment protocol, provided those additional test(s) are defined in other existing ISO or ICAR higher level test protocols. The designated test laboratory will then quote the additional cost(s) in the test plan they submit to Service-ICAR. Service-ICAR will then pass on those additional costs to the service user making the request.

10.9.5 Ownership, publication and reporting of results

- The test results will be compiled into a confidential report, a copy of which will then be transmitted to the service user(s) who signed the application. The service user or applicant then becomes the owner of that report. Service-ICAR will retain a confidential copy of the report for reference and comparison purposes.
- Ownership of the reports:
 - Service user: Owns the field validation test report. Should not access any previous reports or reports owned by other service users.
 - Manufacturer: Owns the original or previous test report(s). Can obtain the field validation test report upon agreement with the service user.
 - Laboratory: Issues the field validation test report. Needs the manufacturer’s permission to access any previous reports, if these were not produced by the same laboratory.
- Test results relating to the same device(s), but submitted in requests from different applicants may be compared by Service-ICAR or the designated laboratories acting on its behalf. In cases where the test results reveal differences between samples of the same device(s) between tests from different applicants or service users, the test report will detail those differences and their implications. It will then become the responsibility of the respective Competent Authority who submitted the request(s) to take any initiative they require to resolve or explain those differences with the relevant manufacturer, to the mutual satisfaction of those parties. If the case reveals a misuse of ICAR device certification protocols, then the case must be reported to Service-ICAR. ICAR has an established procedure for the handling of misuse cases.
10.9.6 Confidentiality

- Neither ICAR nor Service-ICAR will publish the names of the Competent Authorities and/or service users using their ID device field validation services. Nor share the results of tests requested by independent authorities directly with the relevant device manufacturers unless the authority’s permission is asked and given.

- ICAR will not disclose information about which devices are being or have been tested from which countries/markets.

- All test results shall be kept confidential between ICAR and the authority making the request, with the exception of comparisons between tests of the same devices mentioned under ‘Ownership, publication and reporting of results’. Specific test results are returned only to the authority making the request(s) and providing the specific samples.