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Abstract  
 
There is growing interest from dairy producers in traits related to health and fitness of cattle, 
which often have low heritabilities but high economic values. Traits with low heritability can 
be improved by genetic selection, but large numbers of daughter records are required to 
produce predicted transmitting abilities with high reliability. Producer-recorded health event 
data collected from on-farm computer systems were used to estimate variance components 
and compute traditional predicted transmitting abilities (PTA) for several health traits 
(digestive problems, displaced abomasum, ketosis, lameness, mastitis, metritis, reproductive 
problems, and retained placenta) using single-trait threshold sire models. Heritabilities ranged 
from 0.01 for lameness to 0.30 for displaced abomasum using only first lactation data. Results 
were similar when only first lactation or first through fifth parity data were used. Multiple 
trait models also were used to estimate genetic correlations among those traits, which ranged 
from -0.29 (ketosis, lameness) to +0.81 (displaced abomasum, ketosis). Only three traits 
(displaced abomasum, mastitis, metritis) had 300 or more bulls with traditional reliabilities of 
at least 0.50.  A multiple-trait sire threshold model was used to compute genomic PTA for 
2,649 genotyped bulls. The increase in reliability from including the genomic data ranged 
from 0.38 (displaced abomasum) to 0.48 (lameness).  These results suggest that enough data 
may exist in on-farm computer systems to enable the routine calculation of genetic and 
genomic evaluations for the most common health disorders in US Holstein cattle. 
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Introduction  
 
A negative relationship of production with fitness traits, possibly in response to selection for 
increased dairy cattle production over the last 50 years, has become apparent (Rauw et al., 
1998). Declining health of cows can impact the profitability of a herd in several way, 
including increased culling rates, decreased and withheld milk, veterinary expenses, and 
additional labor. Kelton et al. (1998) estimated the cost of several common health events, 
which ranged from $39 per lactation with an incidence of cystic ovaries to $340 per case of 
left displaced abomasum. Over the past fifteen years, however, these economic costs may 
have drastically changed. Improvement of health traits by genetic selection is appealing 
because the approach is well understood and gains are cumulative. The potential for genetic 
improvement in health-related traits has been demonstrated in Scandinavian cattle breeds 
(Abdel-Azim et al., 2005), and mastitis incidence has been successfully improved in 
Norwegian cattle (Heringstad et al., 2003). However, there is no mandated or consistent data 
recording system for health traits in the United States. 



Several previous studies have addressed the use of producer-recorded health 
information for genetic improvement. Zwald et al. (2004a) used producer-recorded health 
event records from 2001 through 2003 and concluded that those data are useable for genetic 
selection. Parker Gaddis et al. (2012) recently showed that similar data accurately reflected 
the true incidence of health events, and confirmed that phenotypic relationships among 
common health events were consistent with results from epidemiological studies. The amount 
of producer-recorded data stored in on-farm computer systems in the US is increasing, and 
may provide the records needed to implement routine genetic evaluations for health traits. 
 The objective of this study was to use genetic and genomic analyses and producer-
recorded health event data to estimate variance components and heritability for common 
health traits in US dairy cattle. A multiple-trait genetic analysis was used to identify genetic 
relationships between health events. Single-step methodology was used to incorporate 
genomic information in a multiple-trait analysis of those traits. 
 
Material and methods  
 
Producer-recorded health event data from US farms between 1996 and 2012 were available 
from Dairy Records Management Systems (Raleigh, NC) (Table 1). The health events used 
for  analysis were mastitis (MAST), metritis (METR), cystic ovaries (CYST), digestive 
disorders (DIGE), displaced abomasum (DSAB), ketosis (KETO), lameness (LAME), 
reproductive problems (REPR), and retained placenta (RETP) from cows of parities one 
through five.  Previous editing was applied to the data for common health events as described 
in Parker Gaddis et al. (2012). 
 
Table 1. Summary statistics for each health event of interest. 
 

Health event Number of records 
Number of 

cows 
Number of herd-

years 

Cystic ovaries 222,937 131,194 3,369 

Digestive disorders 156,520 97,430 1,780 

Displaced abomasum 213,897 125,594 2,370 

Ketosis 132,066 82,406 1,358 

Lameness 233,392 144,382 3,191 

Mastitis 274,890 164,630 3,859 

Metritis 236,786 139,818 3,029 

Reproductive disorders 253,272 151,315 3,360 

Retained placenta 231,317 138,457 2,930 
 
 
 
 



Univariate analysis 
 
 A logistic sire model was used in ASReml (Gilmour et al., 2009) due to the binary 
nature of the data. The model is given as follows: 
 

η = Xβ + Zhh + Zss  
 

where η  is the logit of observing the health event of interest, β  is a vector of fixed effects 
including parity as first versus later parities and year-season, X is the corresponding incidence 
matrix of fixed effects, h represents the random herd-year effect, s represents the random sire 
effect where s ~ N 0,  Aσ s

2( )  with A representing the additive relationship matrix, and Zh  and 
Zs  represent the corresponding incidence matrices for the appropriate random effect. 
Variance components and heritabilities were estimated for each common health event 
individually. Accuracies and reliabilities of each sire’s estimated breeding value (EBV) were 
calculated as: 
 

rel = SE2

1+ f( )σ s
2   

 
where rel is the reliability, SE2  is the squared standard error of the sire’s EBV, f is the sire’s 
inbreeding coefficient, and σ s

2  is the estimated sire variance.  Accuracy was calculated as the 
square root of reliability. The variance component estimates were then used as starting values 
of variance components in the multivariate analysis. 
 
Multivariate analyses 
 
 A multiple trait threshold sire model was used to fit a seven-trait model for the 
following most common health events:  MAST, METR, LAME, RETP, CYST, KETO, and 
DSAB. The model is given below: 
 

λ = Xβ +Zhh +Zss   
 
where λ  represents a vector of unobserved liabilities to the given diseases, β  is a vector of 
fixed effects including parity as first versus later parities and year-season, X is the 
corresponding incidence matrix of fixed effects, h represents the random herd-year effect, s 
represents the random sire effect where s ~ N 0,  Aσ s

2( )  with A representing the additive 
relationship matrix, and Zh  and Zs  represent the corresponding incidence matrices for the 
appropriate random effect. Variance components and heritability were determined from 
parameter estimates calculated using THRGIBBS1F90 (Tsuruta and Misztal, 2006). A total of 
100,000 iterations were completed with the first 10,000 discarded as burn-in, saving every 25 
samples. Post-Gibbs analyses were completed using POSTGIBBSF90 (Misztal et al., 2002).  
Posterior means of sire predicted transmitting abilities (PTA) were estimated on the liability 
scale as well as converted to probabilities of disease as described by Zwald (2006). Highest 
posterior densities for the 95% interval were calculated for each parameter. Reliabilities of 
estimated sire PTAs were calculated as shown above using the posterior mean of additive 
variance of each health event, standard deviation of each estimate distribution, and inbreeding 



coefficients of the sires. 
 Genomic data was incorporated through the use of a blended H matrix following single 
step methodology implemented with preGSf90 software (Aguilar et al., 2011). The software 
has a maximum number of genotyped animals that can be used, which was met by restricting 
the genotype data to only include sires with at least five daughters. Default editing conditions 
were applied as set by the software resulting in genomic data being included for 2,649 sires 
with 37,525 markers. The blended H matrix was incorporated into the same multiple trait 
threshold sire model as previously described using THRGIBBS1F90 (Tsuruta and Misztal, 
2006). Difficulties were initially encountered with convergence using all seven traits. To 
obtain better starting values, 2 preliminary analyses were performed. One analysis contained 
four traits (MAST, METR, LAME, and KETO) and the second analysis contained the 
remaining three traits (RETP, CYST, and DSAB). The posterior means of these analyses were 
then used as starting values in the full, seven-trait analysis. Post-Gibbs analyses were 
completed with POSTGIBBSF90. Convergence was assessed using the Coda library 
(Plummer et al., 2006) of R (R Core Team, 2012). Reliability of genomic estimated breeding 
values (GEBV) was estimated following Misztal et al. (2013). The reliabilities from the 
pedigree-based multiple trait analysis were used as reliabilities calculated without genomic 
information. These reliabilities were then converted to the effective number of records for 
genotyped animals following the formula given below: 
 

di =α 1 1− reli( )−1⎡⎣ ⎤⎦  
 
where α  is the ratio of residual variance to genetic variance calculated from the pedigree-
based multiple trait analysis. The inverse matrix Q was calculated as: 
 

Qi = D+ I+G−1 −A22
−1( )α⎡⎣ ⎤⎦

−1
 

 
where G-1 is the genomic relationship matrix and A22

−1  is the inverse of the pedigree-based 
relationship matrix for genotyped animals only.  The genomic reliabilities were then 
approximated as shown below: 
 

reli = 1−αq
ii  

 
where qii is the diagonal element of Q-1 corresponding to the ith animal. 
 
Results and discussion 
 
Heritabilities and standard errors estimated from the single trait analyses are shown in Table 
2. All traits exhibited a genetic component, but most were lowly heritable. The highest 
heritability was found for DSAB at 0.20. This heritability is very close to that estimated with 
a similar but smaller dataset (Zwald et al., 2004a). The high heritability for DSAB may be at 
least partially explained by the severity of the event, often requiring veterinary intervention.  
Zwald et al. (2004b) found DSAB to be the most consistently recorded health event among 
producer recorded data. Lower heritabilities were found for traits such as CYST, LAME, 
REPR, and RESP. These are events that are generally much less likely to be recorded in a 
consistent manner. For example, producers may have differing opinions regarding what 
constitutes an incidence of lameness that needs to be recorded. 



 
 
Table 2. Heritability estimates and standard errors from single-trait analyses using pedigree-
based relationship matrix, A. 
 
Health Event Heritability Standard Error 
Cystic ovaries 0.03 0.006 
Digestive disorders 0.06 0.02 
Displaced abomasum 0.20 0.02 
Ketosis 0.07 0.01 
Lameness 0.03 0.005 
Mastitis 0.05 0.006 
Metritis 0.06 0.007 
Respiratory disorders 0.04 0.01 
Reproductive disorders 0.03 0.006 
Retained placenta 0.07 0.01 
 
 Sire posterior mean of daughters’ probability to each disease are shown in Figure 1. 
The mean probability of displaced abomasum was the highest equal to 0.53, though again, it 
is likely to be one of the diseases that are reported most consistently. The probability of 
daughters experiencing displaced abomasum ranged from 0.33 to 0.73. The mean probability 
of MAST was 0.515 and ranged from 0.29 to 0.66. These estimates are higher than those 
previously reported by Zwald (2004a). Probability of mastitis is more similar to those 
reported by Harder et al. (2006) when analyzing udder disorders as a group.  Probabilities of 
experiencing a reproductive disorder are also similar to those reported by Harder et al. (2006).	
  
	
  



 
Figure 1. Sire posterior mean of daughters’ probability to each disease (CYST = cystic 
ovaries; DSAB = displaced abomasum; KETO = ketosis; LAME = lameness; MAST = 
mastitis; METR = metritis; RETP = retained placenta).  
	
  
 Heritability estimates and 95% HPD from the multiple-trait threshold model are 
shown in Table 3.  Genetic correlations between health events are included on the off-
diagonals. Some traits with very low heritability estimates from the single-trait analyses were 
not included in the multiple-trait analysis. All heritability estimates were significantly 
different from zero. Heritability estimates of MAST and KETO increased in the multiple-trait 
model. Heritability estimates for METR, LAME, RETP, and DSAB decreased, whereas the 
estimate for CYST remained relatively constant. The heritability estimate for DSAB is similar 
to what has been reported previously (Zwald et al., 2004b).  Health events that were lowly 
heritable in the single trait analyses did not increase greatly through the use of a multiple-trait 
model. Several significant genetic correlations were found between health events. A genetic 
correlation of 0.81 [95% HPD = (0.70, 0.92)] was estimated between DSAB and KETO.  
Zwald et al. (2004b) estimated a genetic correlation between these two events equal to 0.14 
(0.03) whereas a higher genetic correlation of 0.64 (0.10) was estimated by Koeck et al. 
(2012). This correlation also is consistent with previous analyses of these data using an 
informal path analysis that found an animal to have odds 15.5 times higher to have an incident 
of DSAB given that they previously had KETO (Parker Gaddis et al., 2012).  A high genetic 
correlation was also estimated between RETP and METR. This correlation is higher than a 
previous estimate found equal to 0.62 (0.11) (Koeck et al., 2012). Significant, positive genetic 
correlations were also found between METR and KETO and METR and DSAB.  
 
 



Table 3. Estimated heritabilities (95% HPD1) on the diagonal with estimated genetic 
correlations below the diagonal from multiple-trait analysis. 
 

 Mastitis Metritis Lameness 
Retained 
placenta 

Cystic 
ovaries Ketosis 

Displaced 
abomasum 

Mastitis 

0.1  
(0.09, 
0.12)       

Metritis 

-0.30  
(-0.45,-
0.15) 

0.04  
(0.03, 
0.05)      

Lameness 

-0.29  
(-0.46,-
0.11) 

0.21  
(0, 0.45) 

0.019  
(0.01, 
0.03)     

Retained 
placenta 

0.01  
(-0.14, 
0.16) 

0.78  
(0.68, 
0.88) 

-0.14  
(-0.36, 
0.07) 

0.05  
(0.03, 
0.06)    

Cystic 
ovaries 

-0.09  
(-0.29, 
0.13) 

-0.17  
(-0.37, 
0.06) 

-0.19  
(-0.40, -
0.06) 

-0.12  
(-0.34, 
0.12) 

0.026  
(0.02, 
0.03)   

Ketosis 

-0.28 
(-0.47,-
0.07) 

0.45  
(0.26, 
0.64) 

0.08  
(-0.17, 
0.34) 

0.10  
(-0.17, 
0.35) 

-0.15  
(-0.37, 
0.13) 

0.08  
(0.05, 
0.11)  

Displaced 
abomasum 

0.001  
(-0.15, 
0.17) 

0.44  
(0.28, 
0.60) 

-0.10  
(-0.29, 
0.09) 

0.06  
(-0.12, 
0.25) 

-0.10  
(-0.31, 
0.10) 

0.81  
(0.70, 
0.92) 

0.13  
(0.11, 0.16) 

  
 Heritability estimates from the multiple-trait analysis using single-step genomic BLUP 
(Table 4) were very similar to what was estimated using pedigree information, but the 
reliability of sire PTAs were improved. The addition of genomic information improved the 
reliabilities of sire PTAs for all health events as shown in Table 5. The reliabilities for these 
traits are low in comparison to production traits, however, the percent improvement that is 
obtained from the addition of genomic information is substantial. Percent improvement over 
reliabilities from single-trait analyses with pedigree information ranged from a 25% 
improvement in KETO to a 37% improvement in both MAST and METR.  
 
Table 4. Estimated heritabilities (95% HPD1) on the diagonal with estimated genomic 
correlations below the diagonal from multiple-trait single-step analysis. 
 

 Mastitis Metritis Lameness Retained 
placenta 

Cystic 
ovaries Ketosis Displaced 

abomasum 

Mastitis 

0.12 
(0.10, 
0.14) 

 

      



Metritis 
-0.36  

(-0.53, -
0.19) 

0.04 
(0.027, 
0.043) 

     

Lameness  
0.13  
(-0.1, 
0.34) 

0.026 
(0.015, 
0.034) 

    

Retained 
placenta    

0.04  
(0.03, 
0.05) 

   

Cystic 
ovaries    

-0.02 
(-0.22, 
0.16) 

0.03 
(0.01, 
0.04) 

  

Ketosis 
-0.16  

(-0.31, 
0.01) 

0.44  
(0.26, 
0.64) 

   
0.08 

(0.05, 
0.10) 

 

Displaced 
abomasum    

0.01  
(-0.21, 
0.16) 

-0.11  
(-0.29, 
0.13) 

 0.12 
(0.09, 0.14) 

 
Table 5. Mean reliabilities of sire PTA computed with pedigree information and genomic 
information. 
 
 

Health Event Pedigree Information 
Blended Pedigree & 

Genomic Information 
Mastitis 0.30 0.41 
Metritis 0.30 0.41 
Lameness 0.28 0.37 
Retained placenta 0.29 0.38 
Ketosis 0.28 0.35 
Displaced abomasum 0.30 0.40 
 
Conclusions 
 
These results suggest that enough data may exist in on-farm computer systems to enable the 
routine calculation of genetic and genomic evaluations for the most common health disorders 
in US Holstein cattle. Multiple-trait analysis is challenging because of demanding 
computational requirements, but the gain in information from correlated traits may be worth 
the additional time required for analysis. 
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