

Development of a global heat stress assessment for genetic evaluation in dairy cattle

P. Lemal¹, M-N. Tran², M. Schroyen¹, N. Gengler¹

¹Gembloux Agro-Bio Tech (GxABT), University of Liège, Gembloux, Belgium ²Elevéo, Association Wallonne des Eleveurs, Ciney, Belgium

Objectives

- Be able to perform genetic evaluation for heat tolerance for a variety of traits
- Combine these traits to obtain a global heat stress assessment
- Evaluate the possibility to implement the assessment in selection

Genetic evaluation

Data

- Milk recording (milk yield, fat %, protein % and SCC)
- FPCM: milk yield * (0.337 + 0.116 * fat % + 0.06 x protein %)
- SCS: [log₂ (SCC/100000)] + 3 with minimum=0.1
- ightarrow 1740 Walloon Holstein cows from 2015 to 2022 in six herds
- Sensors (activity, rumination and eating time)

ightarrow 459 Walloon Holstein cows from October 2019 to July 2022 in six herds

- Meteorological data
- THI: ((1.8 × T) + 32) − [(0.55 − 0.0055 × RH) × ((1.8 × T) − 26)]

Method

Reaction norm model on the THI

Define the threshold

y = THI + HY + (DIM-s) + lact + age + a + pe + e

• Evaluate the animals

 $y = HTD + (DIM-s) + lact + age + a + \alpha [f(THI)] + pe + \pi [f(THI)] + e$

Hagiya et al., (2019), Animal Science Journal, 90(5), 613-618.

Method

Model adapted from McWhorter et al., 2022

```
y = THI + HY + (DIM-s) + lact + age + a + pe + e
```

Fixed effects	 THI: Temperature-humidity index HY: Herd year DIM-s: Combination of day in milk and season of calving lact: Lactation number age: Age at calving
Random effects	a : additive genetic pe : permanent environment

THI thresholds

y = THI + HY + (DIM-s) + lact + age + a + pe + e

Method

Evaluation

	FPCM	Activity	Rumination	Eating	SCS
h ² threshold	0.15 ± 0.02	0.14 ± 0.06	0.19 ± 0.05	0.12 ± 0.05	0.08 ± 0.02
h ² THImax	0.08 ± 0.18	0.31 ± 0.25	0.17 ± 0.29	0.09 ± 0.21	0.09 ± 0.12

Heritability values

		FPCM	Activity	Rumination	Eating	SCS
S	FPCM		0.45 ± 0.62	-0.02 ± 0.46	0.28 ± 0.70	-0.40 ± 0.18
	Activity	-0.38 ± 0.30		0.73 ± 0.66	-0.01 ± 0.18	-0.39 ± 0.18
	Rumination	0.32 ± 0.16	0.27 ± 0.31		-0.12 ± 0.36	-0.10 ± 0.43
	Eating	0.29 ± 0.28	0.29 ± 0.64	0.32 ± 0.36		0.06 ± 0.55
	SCS	-0.19 ± 0.14	-0.27 ± 0.28	0.22 ± 0.20	-0.33 ± 0.35	

Genetic correlations

Regression Constant

Evaluation

y = HTD + (DIM-s) + lact + age + a + α [f(THI)] + pe + π [f(THI)] + e

 \rightarrow Combination : « phenotypic reaction »

	FPCM	Activity	Rumination	Eating	SCS
FPCM		0.50 ± 0.31	0.20 ± 0.26	0.10 ± 0.20	-0.42 ± 0.09
Activity	-0.02 ± 0.05		0.56 ± 0.14	0.12 ± 0.08	-0.35 ± 0.12
Rumination	0.20 ± 0.05	-0.12 ± 0.05		0.25 ± 0.10	-0.05 ± 0.20
Eating	0.19 ± 0.05	0.10 ± 0.05	0.07 ± 0.05		0.14 ± 0.20
SCS	-0.17 ± 0.03	-0.04 ± 0.05	0.08 ± 0.05	-0.10 ± 0.05	

« Phenotypic » correlations Regression Constant

Global assessment

Combination of traits

Combination of traits

Global assessment \rightarrow Pseudo-phenotype

Implementation

Usable in selection ?

Pseudo-phenotype

• y = a + e

- Heritability : 0.44
- Correlations with production \rightarrow -0.60

Conclusion

- All traits adapted to routine
- Heat stress assessment based on production, health and behaviour
- Potentialy implementable in routine genetic evaluation

Thank you for your attention

Pauline Lemal ULiège - GxABT pauline.lemal@uliege.be

Supported by:

